(Go: >> BACK << -|- >> HOME <<)

이중근호

최근 수정 시각:
5
편집
현재 사용중인 아이피가 ACL그룹 IDC #12915에 있기 때문에 편집 권한이 부족합니다.
만료일 : 무기한
사유 : IDC(AS26496)
토론 역사
[ 펼치기 · 접기 ]
이론
기본 대상
다루는 대상과 주요 토픽
대수적 구조
정리·추측
관련 하위 분야
대수 위상수학
기타 및 관련 문서
1. 개요2. 표기3. 공식
3.1. 예시
4. 다중근호5. 국가별 교육과정6. 관련 문서

1. 개요[편집]

/ double radical

이중근호근호 안에 근호가 하나 더 있는 것을 말한다. 이런 상태가 반복되어 근호가 세 개 이상이 되면 다중근호()라고 한다.

2. 표기[편집]

근호 안에 또 다른 근호를 표기할 때는, 관례적으로 모든 근호를 1+35+7\sqrt{1+3\sqrt{5+\sqrt 7}}처럼 보기 좋게 우측으로 몰아서 표기한다. 꼭 이렇게 해야 수학적으로 옳은 것은 아니며, 35+7+1\sqrt{3\sqrt{5+{\sqrt 7}}+1}와 같이 뒤죽박죽 표기해도 문제는 없다.

3. 공식[편집]

이중근호로 된 식을 바로 계산하기는 쉽지 않으므로 단일근호로 바꿀 필요가 있다. 아래의 공식으로 이중근호를 풀어낼 수 있다.

a+b+2ab=a+ba+b2ab=ab\displaystyle \begin{aligned} \sqrt{a+b+2\sqrt{ab}}&=\sqrt{a}+\sqrt{b} \\ \sqrt{a+b-2\sqrt{ab}}&=\bigl|\sqrt{a}-\sqrt{b}\bigr|\end{aligned}

증명은 아래와 같다.

a+b+2ab=a2+2ab+b2=(a+b)2=a+ba+b2ab=a22ab+b2=(ab)2=ab\displaystyle \begin{aligned} \sqrt{a+b+2\sqrt{ab}}&=\sqrt{\sqrt{a}^2+2\sqrt{a}\sqrt{b}+\sqrt{b}^2} \\ &=\sqrt{\bigl(\sqrt{a}+\sqrt{b} \bigr)^2} \\ &=\sqrt{a}+\sqrt{b} \\ \sqrt{a+b-2\sqrt{ab}}&=\sqrt{\sqrt{a}^2-2\sqrt{a}\sqrt{b}+\sqrt{b}^2} \\ &=\sqrt{\bigl(\sqrt{a}-\sqrt{b}\bigr)^2} \\ &=\bigl|\sqrt{a}-\sqrt{b}\bigr|\end{aligned}

위 증명에서는 다음의 곱셈 공식을 사용했다.

(a+b)2=a2+2ab+b2(ab)2=a22ab+b2\displaystyle \begin{aligned} (a+b)^2&=a^2+2ab+b^2 \\ (a-b)^2&=a^2-2ab+b^2 \end{aligned}

또한 다음을 주의해야 한다. 1학년의 꿈 참고.

a±ba±ba±b\displaystyle \sqrt{\sqrt{a\pm b}}\neq\sqrt{\sqrt{a}\pm\sqrt{b}} \neq\sqrt{\sqrt{a}}\pm\sqrt{\sqrt{b}}


간혹 네제곱근을 사용해야 단일근호로 바꿀 수 있는 경우도 있다. 즉,

a+br=r4b+arr\sqrt{a+b\sqrt r} = \sqrt[4]{r} \sqrt{b+\dfrac{a}{r} \sqrt r}

로 변형 후 위 공식을 적용해야 하는 경우도 있다는 뜻이다.

또한 이중근호를 항상 풀 수 있는 것도 아니다.
5+26=(2+3)+223=2+37210=(2+5)225=25=524+32=243+22=24(2+1)+221=24(2+1)5+35=543+5=546+252=54(5+1)+2512=54(5+1)2\displaystyle \begin{aligned} \sqrt{5+2\sqrt{6}}&=\sqrt{(2+3)+2\sqrt{2 \cdot 3}}\\&=\sqrt{2}+\sqrt{3}\\\\\sqrt{7-2\sqrt{10}}&=\sqrt{(2+5)-2\sqrt{2 \cdot 5}}\\&=\bigl|\sqrt{2}-\sqrt{5}\bigr|=\sqrt{5}-\sqrt{2} \\\\ \sqrt{4+3\sqrt 2}&=\sqrt[4]{2} \sqrt{3+2\sqrt 2}\\&=\sqrt[4]{2} \sqrt{(2+1)+2\sqrt{2 \cdot 1}}\\&=\sqrt[4]{2}(\sqrt{2} +1) \\\\ \sqrt{5+3\sqrt 5}&=\sqrt[4]{5} \sqrt{3+\sqrt 5}\\&=\sqrt[4]{5} \sqrt{\dfrac{6+2\sqrt{5}}{2}} \\&=\sqrt[4]{5} \sqrt{\dfrac{(5+1)+2\sqrt{5 \cdot 1}}{2}} \\&=\dfrac{\sqrt[4]{5}(\sqrt{5} +1)}{\sqrt 2}\end{aligned}

4. 다중근호[편집]

이중근호뿐만 아니라 삼중근호, 사중근호 등도 얼마든지 식으로 나타낼 수 있다. 삼중근호를 단일근호로 바꾸려면, 먼저 삼중근호 안에 있는 이중근호를 위의 공식을 이용하여 단일근호로 바꾼다. 이렇게 하여 얻어진 이중근호 식에, 다시 공식을 적용하여 단일근호로 바꾸면 된다. 몇 개의 근호가 중첩되어 있건 이런 식으로 하면 된다.

다중근호가 들어간 대표적인 식으로 가우스가 구한 정십칠각형의 코사인 값이 있다. 코사인 값이 삼중근호이지만[1] 사인 값이 사중근호이다. 마찬가지로 정257각형은 사인 값이 팔중근호, 정65537각형은 사인 값이 십육중근호, 정4294967297각형[2]은 삼십이중근호가 들어가게 된다. 페르마 수는 2차방정식 2n2^{n}번으로 변환 가능해서 그러며 1의 nn제곱근과도 공식이 겹친다. 정17각형의 사인, 코사인 값을 유도하는 공식은 다음과 같다.#[3]
16cos(217π)=1+17+34217+217+31734217234+217\begin{aligned}16 \cos{ \biggl(\dfrac{2}{17} \pi \biggr)}=&- 1 + \sqrt {17} + \sqrt {34 - 2 \sqrt {17}} + 2 \sqrt {17 + 3 \sqrt {17} - \sqrt {34 - 2 \sqrt {17}} - 2 \sqrt {34 + 2 \sqrt {17}} }\end{aligned}
정오각형, 정십이면체, 정이십면체, 정백이십포체, 정육백포체 그리고 아르키메데스 다면체의 면적과 부피를 구할 때도 다중근호가 많이 사용된다.

2제곱근과 3제곱근이 섞여 있는 다중근호는 식이 훨씬 더 복잡해진다. 3차방정식과 4차방정식의 근의 공식이 이러하다. 정칠각형, 정구각형, 다듬은 육팔면체, 다듬은 십이이십면체도 2제곱근과 3제곱근이 반복돼서 나온다.[4]

5. 국가별 교육과정[편집]

2007 개정 교육과정에서 고1 과정에 이중근호를 포함하는 등, 계속 이중근호를 가르치고 있었으나 2009 개정 교육과정부터 전면 삭제되었다.
수학Ⅰ의 1단원에 속하는 〈식의 계산〉 부분에서 다룬다. 따라서 일본 대학으로 유학하려면 입시를 위해 이중근호를 공부해야 한다.

6. 관련 문서[편집]

[1] nn페르마 수라 할때 cos(2π/n)\cos{(2\pi/n)}, cos(π/n)\cos{(\pi/n)}값이 n1n-1중근호가 들어간다. 정삼각형의 코사인 값은 유리수지만 사인 값이 단일근호이며 정오각형의 코사인 값이 단일근호이지만 사인 값은 이중근호가 들어간다.[2] 4294967297의 약수인 정641각형, 정6700417각형도 32중근호가 사용된다.[3] 제목은 5차방정식이라 되어있지만 중간부분에 정십칠각형 코사인 값을 유도하는 방법이 나온다. 마찬가지로 257, 65537각형 등도 유도 가능해 보인다.[4] 아르키메데스 다면체 중 다듬은 육팔면체와 다듬은 십이이십면체만 해당. 이 둘이 nn차원 아르키메데스 다면체 중에서는 다른 차원에서는 찾아볼 수 없는 3차원의 고유한 형태이기도 하다.

크리에이티브 커먼즈 라이선스
이 저작물은 CC BY-NC-SA 2.0 KR에 따라 이용할 수 있습니다. (단, 라이선스가 명시된 일부 문서 및 삽화 제외)
기여하신 문서의 저작권은 각 기여자에게 있으며, 각 기여자는 기여하신 부분의 저작권을 갖습니다.

나무위키는 백과사전이 아니며 검증되지 않았거나, 편향적이거나, 잘못된 서술이 있을 수 있습니다.
나무위키는 위키위키입니다. 여러분이 직접 문서를 고칠 수 있으며, 다른 사람의 의견을 원할 경우 직접 토론을 발제할 수 있습니다.

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
더 보기