(Go: >> BACK << -|- >> HOME <<)

4차원

최근 수정 시각:
65
편집
현재 사용중인 아이피가 ACL그룹 IDC #12915에 있기 때문에 편집 권한이 부족합니다.
만료일 : 무기한
사유 : IDC(AS26496)
토론 역사
4D에서 넘어옴
분류
다른 뜻 아이콘  
은(는) 여기로 연결됩니다.
물리학의 시공간에 대한 내용은 시공간 문서
번 문단을
부분을
, 4D 영화에 대한 내용은 4차원 영화 문서
번 문단을
번 문단을
부분을
부분을
, 성격에 대한 내용은 4차원(성격) 문서
번 문단을
번 문단을
부분을
부분을
, 오락실 게임의 꼼수를 뜻하는 은어에 대한 내용은 4차원(게임) 문서
번 문단을
번 문단을
부분을
부분을
, 내연동물의 등장인물에 대한 내용은 사차원(내연동물) 문서
번 문단을
번 문단을
부분을
부분을
, 별명이 사차원인 헤븐 번즈 레드의 캐릭터에 대한 내용은 텐네 미코 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.

K-cell 4D

1. 개요2. 구현 방법3. 4차원에서 정의되는 도형

1. 개요[편집]

4차원(, fourth dimension, 4-D)은 4개의 차원(dimension)으로 이루어진 임의의 공간이다. 숫자쌍에서 마음대로 정할 수 있는 숫자가 네 개라는 말이다.

2. 구현 방법[편집]

비단 기하학이나 물리학 같은 복잡한 개념을 쓸 필요 없이 단순히 4개의 정보를 다루면 4차원 데이터다. 쉽게 말해 어떤 사람에 대한 수치 데이터를 다루기 위해 키, 몸무게, 가족수, 재산을 통계로 만들겠다고 하면 A라는 사람은 (172 cm, 64 kg, 4명, 5억 원)이라는 4개의 숫자쌍으로 정리가 되고, 4개의 독립적인 숫자를 쓰기 때문에 이게 바로 4차원 데이터다.

이 4개의 숫자가 있다는 걸 기하학으로 생각한 개념이 바로 서로 방향이 겹치지 않는 좌표축이 4개 있다는 말. [1]

4차원 유클리드 좌표공간상에서 함수 그래프를 그리면 3차원 다양체(3변수함수)가 그려지듯이 n차원 유클리드 좌표공간상에서 함수 그래프를 그리면 n-1차원 다양체(n-1변수함수)가 그려진다고 한다. 4차원 유클리드 공간 상에서 그려지는 함수를 초곡면이라고 한다.

1086px-Real func...

위 사진은 4차원 유클리드 실공간 위에서 삼변수함수를 그리는 원리,방법의 하나를 보여주는 사진이다.

사차원공간의 4가지 초평면

위 사진은 좌표축이 4개 있는 사진을 바탕으로 어느 일반인이 Wolfram Mathematica 14에서 그린 4차원 유클리드 실공간에서의 4가지 초평면의 사진이다.[2]

Eugene Khutoryansky라는 유튜브 채널에서는 4차원뿐만 아니라 그 이상의 차원들도 2차원 상에서 사진, 그림으로 그릴 수 있다고 주장했다.

이것,이것, 이것도 보면 4차원 초입방체, 4차원 실공간에 대해 이해하는 데 도움 될 것이다.

삼변수함수 in Desmos ...
위 사진은 Desmos 3D로 그린 삼변수함수 f(x,y,z)=cos(x)+cos(y)+cos(z)의 그림이다 링크

이처럼 4차원 도형의 모습을 상상하기 힘든 이유는 우리가 오직 3차원 공간에서만 살고 있고, 4차원 도형을 현실에서 직접 본 적도 거의 없기 때문이다.

삼변수함수를 그리는 방법에는 서로 방향이 겹치지 않는 축 4개를 그리는 방법과 4개의 변수 중에서 하나를 색깔로 하여 그리는 방법 그리고 4개의 변수 중에서 하나를 애니메이션으로 정하여 그리는 방법이 있다.

3. 4차원에서 정의되는 도형[편집]

  • 초기둥 종류
    • 4차원 초각기둥(Hyperprism): 두 개의 (4차원의 방향으로)평행한 3차원 다면체 사이에 선을 그어 만들어지는 도형으로, 두 개의 다면체와, 그 다면체를 이루는 면의 개수만큼의 각기둥으로 구성돼 있다.
    • 구 초기둥(Spherinder[3] 또는 Spherical cylinder): 밑포가[4] 구인 초기둥이다. 평행한 두 개의 구와 그 사이의 4차원 공간을 점하는 4차원 도형으로 이루어져있다.
    • 원뿔 초기둥(Coninder[5] 또는 Conical cylinder): 밑포가 원뿔인 초기둥이다.
    • 원기둥 초기둥(Cubinder 또는 Cubical Cylinder): 밑포가 원기둥인 초기둥이다.
  • 초뿔 종류
    • 4차원 초각뿔: 하나의 다면체와 4차원 공간상의 꼭짓점을 이은 도형이다.
    • 구 초뿔(Sperone): 밑포가 구인 초뿔. (sphere + cone)
    • 다이콘(Dicone): 밑포가 원뿔인 초뿔이다. 두 개의 원뿔(cone)이 붙은 것과 같다고 하여 다이콘이라고 불린다.
    • 원기둥 초뿔(Cylindrone[6] 또는 Cylinderical Cone): 밑포가 원기둥인 초뿔이다.
    • 정육면체 초뿔(Cubic Pyramid): 밑포가 정육면체인 초뿔이다. 정팔포체의 각 포에 붙이면 정이십사포체를 만들 수 있다.
  • 토러스 종류
    • 토러스 초기둥(Torinder): 밑포가 토러스인 초기둥이다.
    • 구 토러스(Spheritorus): 구를 특정 축으로 회전시켜 얻어진 도형이다. 토러스 구와 위상수학적으로 쌍대 관계이다.
    • 토러스 구(Torisphere): 구 초기둥을의 양쪽 끝을 휘어 자신의 안쪽으로 연결한 도형이다. 토러스와 위상수학적으로 쌍대 관계이다.
    • 다이토러스(Ditorus): 토러스 초기둥의 양쪽 끝을 휘어 자신의 안쪽으로 연결한 도형이다.
    • 타이거(Tiger)[7]: 토러스의 각 단면이 되는 원을 다시 다른 방향으로 토러스의 형태로 회전시켜 얻어지는 도형이다. 일반인들이 이해하기에 가장 난해한 도형이다.
    • 크로스캡: 토러스 한쪽 부분의 안팎을 뒤집은 도형. 후술할 클라인의 병과는 다르다.
  • 듀오프리즘(Duoprism): 두 가지, 또는 한 가지 각기둥을(4차원의 방향으로) 서로 둘러싸도록 접혀 만들어지는 4차원 도형이다. 두 각기둥의 밑면의 개수와 꼭짓점 개수로(p-q 듀오프리즘) 표기한다.[8] 총 초부피는 p각형의 면적*q각형의 면적이 된다.
  • 프리즈믹 실린더(Prismic Cylinder): 원기둥 하나와과 각기둥 하나를 4차원 방향으로 서로 둘러싸이도록 접혀서 만들어지는 도형. 듀오프리즘과 듀오실린더 사이의 중간 형태로 볼 수 있다. 4-프리즈믹 실린더는 특별히 원기둥 초기둥으로 불리기도 한다.
  • 듀오실린더: 듀오프리즘의 원기둥 버전이라고 보면 된다. 두 개의 원기둥을 서로 둘러싸도록 토러스형으로 접혀 만들어지는 4차원 도형이다. 총 두 개의 토러스형 초입체로 구성되어 있으며, 면은 한 개, 모서리와 꼭짓점은 없는 도형이다.
  • 초구: n차원 곡면. (n+1)차원 공간의 특정한 지점에서 같은 거리에 존재하는 점들의 집합. 어느 방향으로 잘라도 항상 구이다.
  • 알렉산더의 뿔 달린 구: 위 초구와 위상동형인 도형. 구 일부를 뿔처럼 늘린 뒤 꼬아놓은 것이다.
  • 클라인의 병: 3차원 곡면. 뫼비우스의 띠의 4차원 버전. 3차원에서 안과 밖이라고 부르는 부분이 따로 존재하지 않는다.
  • 사영평면: 의 마주보는 점을 빈틈없이 접어 만드는 도형.
  • 쌍각뿔 종류: 초기둥의 쌍대다포체이다.
  • 엇각기둥 종류: 윗입체와 아랫입체가 쌍대다포체 관계이며 옆입체는 2가지 종류가 있는데 윗입체 혹은 아랫입체와 면을 맞닿는 입체는 n각뿔 모양을 하며 윗입체, 아랫입체와 동시에 모서리만 접하는 입체는 사면체 모양이다.
  • 엇쌍각뿔 종류: 엇각기둥의 쌍대다포체이다.
  • 고른 다포체: 아르키메데스 다면체의 4차원 버전.
    • 한편 4차원 이상에서도 이러한 방식으로 고른 다포체(uniform polychoron, uniform 4-polytope)을 만들 수 있다. 4차원에서도 정십각형까지 사용 가능하며 5차원 이상에서도 정팔각형까지 사용 가능하다. 다만 다듬은 육팔면체와 다듬은 십이이십면체의 형태는 4차원 이상에서는 사라진다.[9]
  • 4차원 버전의 카탈랑 다포체도 있다. 고른 다포체의 쌍대다포체이다.
  • 한편 이를 응용해서 쌍곡포물입체, 타구포물입체, 타구입체 등도 만들 수 있다. 포물선을 다른 방향으로 포물선 방향으로 회전시키는 등[10] 다양한 도형들을 만들 수 있다.
  • 존슨 다면체를 4차원으로 확장시킨 CRF 다포체는 훨씬 더 많은 종류가 존재할 것으로 예상된다. 특히 정육백포체를 응용한 도형을 포함하면 조합 수가 더 많아질 것이다. 당장 자른 정육백포체(diminished 600-cell)만 해도 최소 314,248,344가지라고 알려져 있다.

실제로 페루의 어느 한 교수는 mathematica로 사차원 삼변수함수 그래프를 그리는 방법을 연구했다고 한다. 링크[11]
[1] n차원은 그런 좌표축이 n개 있다.[2] 빨간색, 초록색,파란색, 노란색은 각각 x=0, y=0, z=0, w=0라는 방정식을 4차원 유클리드 실공간에서 그린 사진이다[3] sphere+cylinder[4] 3차원 도형의 '밑면'을 임의 차원으로 확장했다고 생각하면 된다. 밑입체라고도 불린다.[5] cone + cylinder[6] cylinder + cone[7] 처음에는 이를 토라(Tora)로 지었으나 일본어 虎(とら)와 로마자 표기가 같아서 착안한 이름.[8] 예: 삼각기둥 5개와 오각기둥 3개를 서로 둘러싸게 접어 만든 듀오프리즘을 3-5 듀오프리즘, 또는 5-3 듀오프리즘이라고 불린다. p, q의 순서를 바꿔도 된다. 참고로 4-4 듀오프리즘은 특별히 정팔포체라고 부른다.[9] 4차원에도 다듬은 정이십사포체(snub-24 cell)가 있다지만 이름만 같으며 배열 방식이 전혀 다르다. 오히려 이쪽은 grand antiprism처럼 600포체의 특정 꼭짓점을 이어서 만든 도형이다. 자른다는게 아니라 특정 꼭짓점을 이어서 만든 도형이라 표현한 이유는 snub-24 cell은 정육백포체의 정이십면체 부분을 자르면 만들어지지만 grand antiprism은 전혀 그렇지 않다. 특히 grand antiprism은 무려 1965년에 최초로 발견되었다. 4차원 이상의 기하학 이론이 1850년대에 본격적으로 연구된 것을 보면 엄청 늦은 편이다. snub 24-cell은 정이십면체 24개, 정사면체 120개가 들어가며 grand antiprism은 엇정오각기둥 20개, 정사면체 300개가 들어간다. 정600포체의 꼭짓점을 적당히 이으면 정24포체를 만들 수 있는데 이 원리를 응용한 도형이다. 정십이면체의 20개 꼭짓점 중 이웃하지 않는 8개의 꼭짓점을 이으면 정육면체가 되는 것과 원리는 비슷하다.[10] x, y축이 포물선이며 z, w축도 포물선을 이룬다.[11] 스페인어로 되어 있는 파일이니 스페인어를 할 줄 아는 사람이라면 관심 있게 읽어도 좋다.

크리에이티브 커먼즈 라이선스
이 저작물은 CC BY-NC-SA 2.0 KR에 따라 이용할 수 있습니다. (단, 라이선스가 명시된 일부 문서 및 삽화 제외)
기여하신 문서의 저작권은 각 기여자에게 있으며, 각 기여자는 기여하신 부분의 저작권을 갖습니다.

나무위키는 백과사전이 아니며 검증되지 않았거나, 편향적이거나, 잘못된 서술이 있을 수 있습니다.
나무위키는 위키위키입니다. 여러분이 직접 문서를 고칠 수 있으며, 다른 사람의 의견을 원할 경우 직접 토론을 발제할 수 있습니다.

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
더 보기