(Go: >> BACK << -|- >> HOME <<)

Solar eclipse of February 18, 2091

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of February 18, 2091
Map
Type of eclipse
NaturePartial
Gamma1.1779
Magnitude0.6558
Maximum eclipse
Coordinates71°12′N 17°48′W / 71.2°N 17.8°W / 71.2; -17.8
Times (UTC)
Greatest eclipse9:54:40
References
Saros122 (62 of 70)
Catalog # (SE5000)9712
edit

Eclipses in 2091

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 122

edit

Inex

edit

Triad

edit

Solar eclipses of 2091–2094

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on June 13, 2094 and December 7, 2094 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2091 to 2094
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
122 February 18, 2091
 
Partial
1.1779 127 August 15, 2091
 
Total
−0.949
132 February 7, 2092
 
Annular
0.4322 137 August 3, 2092
 
Annular
−0.2044
142 January 27, 2093
 
Total
−0.2737 147 July 23, 2093
 
Annular
0.5717
152 January 16, 2094
 
Total
−0.9333 157 July 12, 2094
 
Partial
1.3150

Saros 122

edit

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 46–68 occur between 1801 and 2200:
46 47 48
 
August 28, 1802
 
September 7, 1820
 
September 18, 1838
49 50 51
 
September 29, 1856
 
October 10, 1874
 
October 20, 1892
52 53 54
 
November 2, 1910
 
November 12, 1928
 
November 23, 1946
55 56 57
 
December 4, 1964
 
December 15, 1982
 
December 25, 2000
58 59 60
 
January 6, 2019
 
January 16, 2037
 
January 27, 2055
61 62 63
 
February 7, 2073
 
February 18, 2091
 
March 1, 2109
64 65 66
 
March 13, 2127
 
March 23, 2145
 
April 3, 2163
67 68
 
April 14, 2181
 
April 25, 2199

References

edit
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.
edit