(Go: >> BACK << -|- >> HOME <<)

Auto Manual Online
Report home > Manual & Guide

Titanium - Design and Fabrication Handbook for Industrial Applications

0.00 (0 votes)
PDFCast is not affiliated with the authors of this page or responsible for its content.
This HTML preview only show 10 first pages of the document. Please download to read full content.
T i t a n i u m design and fabrication handbook
f o r i n d u s t r i a l a p p l i c a t i o n s
T I M E T ®
T i t a n i u m M e t a l s C o r p o r a t i o n

A l l o y s
e x p e r t i s e
s e r v i c e
i n v e n t o r y
P r o d u c t s
T i t a n i u m M e t a l s
C o r p o r a t i o n
T h e w o r l d ’s
c o m p l e t e t i t a n i u m r e s o u r c e
TIMET 40 YEAR WARRANTY
In most power plant surface condenser tubing, tubesheet and service water pipe applications, TIMET CODEWELD®
Tubing and CODEROLL® Sheet, Strip and Plate can be covered by written warranties against failure by corrosion for
a period of 40 years.
For additional information and copies of these warranties, please contact any of the TIMET locations shown on the
back cover of this brochure.
The data and other information contained herein are derived from a variety of sources which TIMET believes are reliable.
Because it is not possible to anticipate specific uses and operating conditions, TIMET urges you to consult with our
technical service personnel on your particular applications. A copy of TIMET’s warranty is available on request.
TIMET ®, TIMETAL®, CODEROLL® and CODEWELD® are registered trademarks of Titanium Metals Corporation.

C O N T E N T S
I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
D e s i g n i n g w i t h T i t a n i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chemical Compositions
Product Forms Available/ASTM Specifications
Design Stresses (ASME) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Welded Tubing – Safe Working Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Tube Vibration and Rigidity
Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Solid, Clad or Lined Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Tubesheet Materials/Galvanic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
F a b r i c a t i n g T i t a n i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Work Area
Shearing
Flame Cutting
Sawing
Hand Abrasive Grinding
Machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Roller Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Welding Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Processes
Shielding
Joint Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Cleaning
Selection Weld Wire (filler metal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Welding Parameters
Technique and Procedures
Evaluating Weld Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Resistance Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Brazing Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Heat Treating Titanium
S u r f a c e T r e a t m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
M a i n t e n a n c e o f T i t a n i u m E q u i p m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I N T R O D U C T I O N
Titanium offers an excellent combination
The following sections address some
of mechanical properties and corrosion
aspects of the design, fabrication and
resistance. These features, coupled with
maintenance of titanium equipment.
availability of product forms and ease of
Design of titanium equipment has
fabrication, have led to extensive use of
followed traditional standards established
titanium and its alloys in chemical process
for other materials of construction. ASTM
equipment. Titanium is now a standard
mill product specifications, TEMA and
material of construction for many
ASME Code standards are followed in
chemical processes and equipment, and
fabrication. Standard product forms are
systems are being assembled by a variety
readily available.
of fabricators on a routine basis for use in
many other industries.
Throughout this publication TIMET
titanium alloys are identified using the
Successful utilization requires careful
TIMETAL® format. This system identifies
consideration of titanium’s unique
titanium alloys and products which
characteristics at the design stage as
have been under TIMET control during
well as during fabrication. Factors such
all phases of production, from ore
as titanium’s high strength to weight
through mill product; for example,
ratio, low elastic modulus, corrosion and
Ti-50A (ASTM Gr. 2) is referred to
erosion resistance, its tendency toward
as TIMETAL 50A.
galling, and its reactivity at high
temperatures must be considered in
order to optimize designs in titanium.
It is generally best to start fresh with
titanium’s properties in mind instead of
attempting to simply substitute titanium
for other materials previously used.
Fabricators who routinely work with
titanium will be helpful in optimizing
design of titanium equipment.
1

D E S I G N I N G W I T H T I T A N I U M
The successful design of titanium
some design features. For example,
exchanger tubing, therefore, is normally
equipment begins with consideration
the ductility of an alloy limits the
less than would be required for
of the environment to which the
minimum bend radius which is feasible
other materials.
equipment is to be exposed. The
for sheet, plate or tubing. It will also be
C h e m i c a l C o m p o s i t i o n
corrodents present and maximum
advantageous to incorporate standard
operating temperature (under upset
product forms into designs utilizing
The chemical compositions of titanium
conditions, possibly) will dictate which
titanium. The excellent corrosion
alloys used in industrial applications are
TIMET alloy should be selected. The
resistance of titanium often permits a
given in Table 1.
physical and mechanical properties of
zero corrosion allowance to be specified.
the alloy selected may, in turn, dictate
Wall thickness for vessels and heat
T a b l e 1
N o m i n a l C h e m i c a l C o m p o s i t i o n
Residuals,
ASTM UNS
N
C
H
Fe
O
Ea
Total
TIMETAL
Grade
Desig.
Max
Max
Max
Max
Max
Al
V
Ni
Mo
Nb
Cr
Zr
Pd
Max
Max
35A
1
R50250
0.03
0.08
0.015
0.20
0.18








0.10
0.40
35A .05Pd1
17
R52252
0.03
0.08
0.015
0.20
0.18







.04-.08
0.10
0.40
35A .15Pd
11
R52250
0.03
0.08
0.015
0.20
0.18







.12-.25
0.10
0.40
50A
2
R50400
0.03
0.08
0.015
0.30
0.25








0.10
0.40
50A .05Pd1
16
R52402
0.03
0.08
0.015
0.30
0.25







.04-.08
0.10
0.40
50A .15Pd
7
R52400
0.03
0.08
0.015
0.30
0.25







.12-.25
0.10
0.40
65A
3
R50550
0.05
0.08
0.015
0.30
0.35








0.10
0.40
Code 12
12
R53400
0.03
0.08
0.015
0.30
0.25


.6-.9
.2-.4




0.10
0.40
3-2.5
9
R56320
0.03
0.08
0.015
0.25
0.15
2.5-3.5
2.0-3.0






0.10
0.40
3-2.5 .05Pd1
18
R56322
0.03
0.08
0.015
0.25
0.15
2.5-3.5
2.0-3.0





.04-.08
0.10
0.40
6-4
5
R56400
0.05
0.08
0.015
0.40
0.20
5.5-6.75
3.5-4.5






0.10
0.40
6-4 ELI
23

0.03
0.08
0.015
0.40
0.13
5.5-6.5
3.5-4.5






0.10
0.40
21S
21
R58210
0.03
0.05
0.015
0.40
0.17
2.5-3.5


14.0-16.0
2.2-3.2



0.10
0.40
21S .05Pd

0.03
0.05
0.015
0.40
0.17
2.5-3.5


14.0-16.0
2.2-3.2


.04-.08
0.10
0.40
38644
19
R58640
0.03
0.05
0.020
0.30
0.12
3.0-4.0
7.5-8.5

3.5-4.5

5.5-6.5
3.5-4.5

0.15
0.40
38644 .05Pd
20
R58645
0.03
0.05
0.020
0.30
0.12
3.0-4.0
7.5-8.5

3.5-4.5

5.5-6.5
3.5-4.5
.04-.08
0.15
0.40
1 These Grades were included into the ASTM Specifications for titanium mill products in 1992, but have not been included at the time of publication in the ASME
Boiler Code Specifications. For the reader’s information, the mechanical properties of the palladium (Pd) modified Grades are the same as the base Grades.
The only difference of note is the improved corrosion resistance of the Pd modified Grades.
T a b l e 2
T i ta n i u m P r o d u c t F o r m s a n d A S T M / A S M E B o i l e r C o d e S p e c i f i c at i o n s
Alloys Covered*
TIMETAL:
35A
50A
65A
75A
6-4
50A .15Pd
50A .05Pd
35A .15Pd
35A .05Pd
Code 12
3-2.5
ASTM:
Gr. 1
Gr. 2
Gr. 3
Gr. 4
Gr. 5
Gr. 7
Gr. 16**
Gr. 11
Gr. 17**
Gr. 12
Gr. 9
ASTM/ASME
Product Forms
Specs
Strip, Sheet, Plate
B265
SB265
Welded Pipe
B337
SB337
Welded Tubing
B338
SB338
Bars and Billets
B348
SB348
Welded Fittings
B363
Castings
B367
Forgings
B381











SB381






* Alloy covered by specifications and product forms available from TIMET.
** In process of ASME approval for SB specs.
•Alloy covered by specification but product forms not available from TIMET.
Alloy not covered by specification.
2

P r o d u c t F o r m s A v a i l a b l e /
Vallourec and TIMET. TIMET’s
network TIMET offers a full range of
A S T M S p e c i f i c a t i o n s
CODEROLL program for sheet and plate
titanium mill products, pipe, fasteners,
provides standard stock sizes for ASME
fittings, weld wire and extrusions.
The titanium product forms available
Boiler Code applications which reduce
and the ASTM specifications which cover
D e s i g n S t r e s s e s
costs and increase design efficiencies.
these are given in Table 2. As noted,
Likewise, VALTIMET’s CODEWELD
Maximum allowable stress values as set
TIMET is a supplier of strip, sheet, plate,
tubing is available in a variety of sizes
forth by the ASME Boiler and Pressure
bars, billets and castings. Tubing is
which allow flexibility of design.
Vessel Code, Section VIII-Division 1
supplied through VALTIMET, a joint
Through its worldwide service center
(prior to 1995); Section II, Part D (since
venture company formed between
1995) are given in Table 3. These values
T a b l e 3
M a x i m u m A l l o w a b l e S t r e s s V a l u e s i n T e n s i o n f o r
A n n e a l e d T i ta n i u m a n d T i ta n i u m A l l o y s , K S I *
Material
Specified Min. Yield
For Metal Temperature Not Exceeding °F (°C)
Form and
ASTM
Tensile
0.2%
100
150
200
250
300
350
400
450
500
550
600
Spec. No.
Grade
TIMETAL
Strength
Offset
Notes
(38)
(66)
(93)
(121)
(149)
(177)
(204)
(232)
(260)
(288)
(316)
Sheet
1
35A
35.0
25.0

8.8
8.1
7.3
6.5
5.8
5.2
4.8
4.5
4.1
3.6
3.1
Strip
2
50A
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
Plate
3
65A
65.0
55.0

16.3
15.6
14.3
13.0
11.7
10.4
9.3
8.3
7.5
6.7
6.0
SB-265
7
50A .15Pd
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
12
Code 12
70.0
50.0

17.5
17.5
16.4
15.2
14.2
13.3
12.5
11.9
11.4


9
3-2.5
90.0
70.0

22.5
22.5
21.7
20.8
19.8
18.6
17.6
16.8
15.8
15.3
15.1
Pipe
1
35A
35.0
25.0

8.8
8.1
7.3
6.5
5.8
5.2
4.8
4.5
4.1
3.6
3.1
SB-337
2
50A
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
Seamless
3
65A
65.0
55.0

16.3
15.6
14.3
13.0
11.7
10.4
9.3
8.3
7.5
6.7
6.0
7
50A .15Pd
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
12
Code 12
70.0
50.0

17.5
17.5
16.4
15.2
14.2
13.3
12.5
11.9
11.4


9
3-2.5
90.0
70.0

22.5
22.5
21.7
20.8
19.8
18.6
17.6
16.8
15.8
15.3
15.1
Pipe
1
35A
35.0
25.0
(1)(2)
7.5
6.9
6.2
5.5
4.9
4.4
4.1
3.8
3.5
3.1
2.6
SB-337
2
50A
50.0
40.0
(1)(2)
10.6
10.2
9.3
8.4
7.7
7.1
6.5
6.1
5.6
5.3
4.8
Welded
3
65A
65.0
55.0
(1)(2)
13.9
13.3
12.2
11.1
10.0
8.8
7.9
7.1
6.4
5.7
5.1
7
50A .15Pd
50.0
40.0
(1)(2)
10.6
10.2
9.3
8.4
7.7
7.1
6.5
6.1
5.6
5.3
4.8
12
Code 12
70.0
50.0
(1)(2)
14.8
14.8
13.9
12.9
12.0
11.3
10.6
10.1
9.6


9
3-2.5
90.0
70.0
(1)(2)
19.1
19.1
18.4
17.7
16.8
15.8
15.0
14.3
13.4
13.0
12.8
Tubing
1
35A
35.0
25.0

8.8
8.1
7.3
6.5
5.8
5.2
4.8
4.5
4.1
3.6
3.1
SB-338
2
50A
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
Seamless
3
65A
65.0
55.0

16.3
15.6
14.3
13.0
11.7
10.4
9.3
8.3
7.5
6.7
6.0
7
50A .15Pd
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
12
Code 12
70.0
50.0

17.5
17.5
16.4
15.2
14.2
13.3
12.5
11.9
11.4


9
3-2.5
90.0
70.0

22.5
22.5
21.7
20.8
19.8
18.6
17.6
16.8
15.8
15.3
15.1
Tubing
1
35A
35.0
25.0
(1)(2)
7.5
6.9
6.2
5.5
4.9
4.4
4.1
3.8
3.5
3.1
2.6
SB-338
2
50A
50.0
40.0
(1)(2)
10.6
10.2
9.3
8.4
7.7
7.1
6.5
6.1
5.6
5.3
4.8
Welded
3
65A
65.0
55.0
(1)(2)
13.9
13.3
12.2
11.1
10.0
8.8
7.9
7.1
6.4
5.7
5.1
7
50A .15Pd
50.0
40.0
(1)(2)
10.6
10.2
9.3
8.4
7.7
7.1
6.5
6.1
5.6
5.3
4.8
12
Code 12
70.0
50.0
(1)(2)
14.8
14.8
13.9
12.9
12.0
11.3
10.6
10.1
9.6


9
3-2.5
90.0
70.0
(1)(2)
19.1
19.1
18.4
17.7
16.8
15.8
15.0
14.3
13.4
13.0
12.8
Forgings
F1
35A
35.0
25.0

8.8
8.1
7.3
6.5
5.8
5.2
4.8
4.5
4.1
3.6
3.1
SB-381
F2
50A
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
F3
65A
65.0
55.0

16.3
15.6
14.3
13.0
11.7
10.4
9.3
8.3
7.5
6.7
6.0
F7
50A .15Pd
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
F12
Code 12
70.0
50.0

17.5
17.5
16.4
15.2
14.2
13.3
12.5
11.9
11.4


Bar
1
35A
35.0
25.0

8.8
8.1
7.3
6.5
5.8
5.2
4.8
4.5
4.1
3.6
3.1
Billet
2
50A
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
SB-348
3
65A
65.0
55.0

16.3
15.6
14.3
13.0
11.7
10.4
9.3
8.3
7.5
6.7
6.0
7
50A .15Pd
50.0
40.0

12.5
12.0
10.9
9.9
9.0
8.4
7.7
7.2
6.6
6.2
5.7
12
Code 12
70.0
50.0

17.5
17.5
16.4
15.2
14.2
13.3
12.5
11.9
11.4


Castings
C-2
50A
50.0
40.0

12.5
11.4
10.3
9.3
8.7
7.7
7.0
6.5
6.1


SB-367
C-3
65A
65.0
55.0

16.3
15.2
13.8
12.5
11.7
10.0
8.9
8.2
7.5


Fittings
WPT1
35A
35.0
25.0

8.8

7.3

5.8

4.8

4.1

3.1
SB-363
WPT2
50A
50.0
40.0

12.5

10.9

9.0

7.7

6.6

5.7
Seamless
WPT3
65A
65.0
55.0

16.3

14.3

11.7

9.3

7.5

6.0
Fittings
WPT1W
35A
35.0
25.0

7.5

6.2

4.9

4.1

3.5

2.6
SB-363
WPT2W
50A
50.0
40.0

10.6

9.3

7.7

6.5

5.6

4.8
Welded
WPT3W
65A
65.0
55.0

13.8

12.1

10.0

7.9

6.4

5.1
Notes: (1) 85% joint efficiency has been used in determining the allowance stress values for welded pipe and tube [see UG-31(a)].
(2) Filler metal shall not be used in the manufacture of welded tubing or pipe.
Values in this table are smaller of 1/3 of the minimum yield strength or 1/4 of the specified tensile strength.
*From Table UNF-23.4 ASME Boiler and Pressure Vessel Code, Section VIII-Division 1 (prior to 1995).
From Table 1B, Section II, Part D, ASME Boiler and Pressure Vessel Code for Section VIII, Division 1 Service (since 1995).
3

T a b l e 4
D e s i g n S t r e s s I n t e n s i t y V a l u e s i n T e n s i o n f o r
A n n e a l e d T i ta n i u m a n d T i ta n i u m A l l o Y s , K S I *
Specified Min. Yield
For Metal Temperature Not Exceeding °F (°C)
Spec.
ASTM
Tensile
0.2%
100
150
200
250
300
350
400
450
500
550
600
No.
Grade
TIMETAL
P-No.
Strength
Offset
Notes
(38)
(66)
(93)
(121)
(149)
(177)
(204)
(232)
(260)
(288)
(316)
Plate, Sheet and Strip
SB-265
1
35A
51
35.0
25.0

11.7
10.8
9.7
8.6
7.7
6.9
6.4
6.0
5.3
4.7
4.2
2
50A
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
3
65A
52
65.0
55.0

21.7
20.8
19.0
17.3
15.6
13.9
12.3
11.1
9.9
8.9
8.0
7
50A .15Pd
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
Pipe and Tubing
SB-337
1
35A
51
35.0
25.0

11.7
10.8
9.7
8.6
7.7
6.9
6.4
6.0
5.3
4.7
4.2
SB-338
2
50A
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
Seamless
3
65A
52
65.0
55.0

21.7
20.8
19.0
17.3
15.6
13.9
12.3
11.1
9.9
8.9
8.0
7
50A .15Pd
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
SB-337
1
35A
51
35.0
25.0
(1)(2)
9.9
9.2
8.3
7.3
6.5
5.9
5.4
5.1
4.5
4.0
3.6
SB-338
2
50A
51
50.0
40.0
(1)(2)
14.2
14.2
14.2
11.6
10.5
9.3
8.3
7.5
6.8
7.4
6.2
Welded
3
65A
52
65.0
55.0
(1)(2)
18.4
17.7
16.2
14.7
13.3
11.8
10.5
9.4
8.4
7.6
6.8
7
50A .15Pd
51
50.0
40.0
(1)(2)
14.2
14.2
14.2
11.6
10.5
9.3
8.3
7.5
6.8
6.4
6.2
Bar and Billet
SB-348
1
35A
51
35.0
25.0

11.7
10.8
9.7
8.6
7.7
6.9
6.4
6.0
5.3
4.7
4.2
2
50A
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
3
65A
52
65.0
55.0

21.7
20.8
19.0
17.3
15.6
13.9
12.3
11.1
9.9
8.9
8.0
7
50A .15Pd
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
Forgings
SB-381
F1
35A
51
35.0
25.0

11.7
10.8
9.7
8.6
7.7
6.9
6.4
6.0
5.3
4.7
4.2
F2
50A
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
F3
65A
52
65.0
55.0

21.7
20.8
19.0
17.3
15.6
13.9
12.3
11.1
9.9
8.9
8.0
F7
50A .15Pd
51
50.0
40.0

16.7
16.7
16.7
13.7
12.3
10.9
9.8
8.8
8.0
7.5
7.3
NOTES: (1) A quality factor of 0.85 has been applied in arriving at the design intensity values of this material.
(2) Filler metal shall not be used in the manufacture of welded tubing or pipe.
*From Table ANF-1.4 ASME Boiler and Pressure Vessel Code, Section VIII-Division 2 (prior to 1995).
From Table 2B, Section II, Part D, ASTM Boiler and Pressure Vessel Code, for Section VIII, Division 2 Service (since 1995).
F I G U R E 1
C h a r t f o r d e t e r m i n i n g s h e l l t h i c k n e s s o f c y l i n d r i c a l a n d s p H e r i c a l v e s s e l s u n d e r
e x t e r n a l p r e s s u r e w h e n c o n s t r u c t e d o f t i m e t a l 5 0 a ( g r a d e 2 ) u n a l l o y e d t i t a n i u m
25,000
G E N E R A L N O T E : S E E T A B L E N T F - 2 F O R T A B U L A R V A L U E S
U P T O 1 0 0 ° F ( 3 8 ° C ) 20,000
18,000
2 0 0 ° F ( 9 3 ° C )
16,000
14,000
4 0 0 ° F ( 2 0 4 ° C )
12,000
10,000
6 0 0 ° F ( 3 1 6 ° C )
9,000
8,000
7,000
ACTOR B
F
6,000
5,000
E = 1 6 . 7 x 1 0 6
4,000
E = 1 4 . 3 x 1 0 6
E = 1 3 . 0 x 1 0 6
3,500
E = 1 1 . 3 x 1 0 6
3,000
2,500
2
3
4
5
6 7 8 9
2
3
4
5
6 7 8 9
2
3
4
5
6 7 8 9
2
3
4
5
6 7 8 9
.00001
.0001
.001
.01
.1
F A C T O R A
4B
2AE
Pa = ———
and
Pa =
———
3(D /t)
3(D /t)
°
°
Instructions for calculating A and B and for using this chart are given in ASME Boiler and Pressure Vessel Code Section VIII Division 1 Part UG paragraph UG-28.
From Fig. 5-UNF-28.28 Appendix 5 Section VIII, Division 1 ASME Boiler and Pressure Vessel Code (prior to 1995).
From Fig. NFT-2, Section II, Part D ASME Boiler and Pressure Vessel Code (since 1995).
4

are obtained using the prescribed ASME
L o w T e m p e r a t u r e s
to be used down to -75°F (-59°C)
Boiler Code Procedure, i.e., the lesser of
provided the user is satisfied that
Titanium has excellent properties at low
one fourth of the ultimate tensile
suitable ductility is available at the
temperatures. Best ductility at very low
strength or one third of the 2% offset
design temperature. Notched and
temperatures is available from TIMETAL
yield strength at each given temperature.
unnotched tensile tests are suggested by
35A (Gr. 1) and TIMETAL 50A (Gr. 2).
Various product forms of annealed
ASME as means whereby the titanium
However, no marked drop in impact
TIMETAL (ASTM Grade) alloys are
alloy can be judged to be suitable.
resistance is observed at subzero
covered in this table. Design stress
temperatures in any of the titanium
intensity values (for less severe service)
alloys. Because of this, the ASME Boiler
for Section VIII-Division 2 construction
and Pressure Vessel Code allows
are given in Table 4. Figures 1 and 2 are
unalloyed titanium TIMETAL 35A (Gr. 1),
charts for determining shell thickness
TIMETAL 50A (Gr. 2), TIMETAL 65A
of cylindrical and spherical vessels under
(Gr. 3) and TIMETAL 50A .15Pd (Gr. 7)
external pressure when constructed
of TIMETAL 50A (Gr. 2) and TIMETAL
65A (Gr. 3), respectively, following
ASME procedures.
F I G U R E 2
C h a r t f o r d e t e r m i n i n g s h e l l t h i c k n e s s o f c y l i n d r i c a l a n d s p H e r i c a l v e s s e l s u n d e r
e x t e r n a l p r e s s u r e w h e n c o n s t r u c t e d o f t i m e t a l 6 5 a ( g r a d e 3 ) u n a l l o y e d t i t a n i u m
30,000
G E N E R A L N O T E : S E E T A B L E N T F - 1 F O R T A B U L A R V A L U E S
U P T O 1 0 0 ° F ( 3 8 ° C )
25,000
2 0 0 ° F ( 9 3 ° C )
20,000
18,000
16,000
14,000
4 0 0 ° F ( 2 0 4 ° C )
12,000
10,000
6 0 0 ° F ( 3 1 6 ° C )
9,000
ACTOR B
8,000
F
7,000
6,000
5,000
E = 1 6 . 9 x 1 0 6
E = 1 4 . 6 x 1 0 6
E = 1 3 . 0 x 1 0 6
4,000
E = 1 1 . 4 x 1 0 6
3,500
3,000
2
3
4
5
6 7 8 9
2
3
4
5
6 7 8 9
2
3
4
5
6 7 8 9
2
3
4
5
6 7 8 9
.00001
.0001
.001
.01
.1
F A C T O R A
4B
2AE
Pa = ———
and
Pa =
———
3(D /t)
3(D /t)
°
°
Instructions for calculating A and B and for using this chart are given in ASME Boiler and Pressure Vessel Code Section VIII Division 1 Part UG paragraph UG-28.
From Fig. 5-UNF-28.22 Appendix 5 Section VIII, Division 1 ASME Boiler and Pressure Vessel Code (prior to 1995).
From Fig. NFT-1, Section II, Part D ASME Boiler and Pressure Vessel Code (since 1995).
5

T a b l e 5
W e l de d T u b i n g S a f e E xt e r n a l W or k i n g P r e s s u r e (psi) at 1 0 0 °F (38°C)
F or A n n e a l e d T I M E T A L 5 0 A ( AS TM G r a de 2 ) , T I M E T A L 5 0 A . 1 5 P d ( AS TM G r a de 7 )

a n d T I M E T A L 5 0 A . 0 5 P d ( AS TM G r a de 1 6 * )
Outside Diameter of Tube
Wall
1/2"
5/8"
3/4"
7/8"
1"
1-1/4"
1-1/2"
1-3/4"
2"
2-1/4"
2-1/2"
(Inches)
0.5
0.625
0.750
0.875
1.00
1.25
1.50
1.75
2.00
2.25
2.50
0.020
621
374
206
130
85
42
0.022
723
467
298
170
122
62
0.025
898
621
431
269
164
85
0.028
1066
749
533
359
254
126
75
42
32
0.032
1277
928
691
514
359
177
104
66
42
0.035
1444
1066
820
621
460
254
135
85
57
40
32
0.042
2114
1371
1060
857
676
436
254
144
98
71
48
0.049
2522
1662
1314
1066
879
600
381
254
155
111
81
0.058
2009
1630
1337
1117
799
570
417
289
181
133
0.065
1856
1557
1304
949
712
528
376
283
192
0.072
2094
1753
1506
1103
857
643
490
359
273
0.083
2446
2064
1773
1340
1050
844
649
523
425
0.095
2067
1598
1260
1024
845
682
551
0.109
2403
1868
1522
1237
1032
867
714
0.120
2679
2094
1700
1407
1190
1003
857
According to Part VG Paragraph VG-2B: (1) Calculate Do/t. (2) Obtain Factor A from Figure 5-VGO-28.0 Appendix 5, Section VIII, Division 1 ASME Boiler and Pressure Vessel Code (prior to
1995), or from Figure G, Section II, Part D, ASME Boiler and Pressure Vessel Code (since 1995). (3) Obtain Factor B. Refer to Figure 1 (ASTM Grades 2, 7, 16*) or Figure 2 (ASTM Grade 3).
4B
4B
(4) External Pressure Formula: Pa = –––––––– assumes a seamless tube. For welded tube: Pa = ––––––––– x .85
[E = .85]
3 (Do/t)
3 (Do/t)
*ASTM Grade 16 is in the process of ASME SB338 approval.
Note: Values in this table may not be exact as they were manually extracted
The safe internal working pressures are shown in Table 5A.
from Figure 1 to determine factors A and B in the pressure formula.
T a b l e 5 a
W e l de d T u b i n g S a f e I n t e r n a l W or k i n g P r e s s u r e (psi) † At 1 0 0 °F (38°C)
F or A n n e a l e d T I M E T A L 5 0 A ( AS TM G r a de 2 ) , T I M E T A L 5 0 A . 1 5 P d ( AS TM G r a de 7 )

a n d T I M E T A L 5 0 A . 0 5 P d ( AS TM G r a de 1 6 * )
Outside Diameter of Tube
Wall
1/2"
5/8"
3/4"
7/8"
1"
1-1/4"
1-1/2"
1-3/4"
2"
2-1/4"
2-1/2"
(Inches)
0.5
0.625
0.750
0.875
1.00
1.25
1.50
1.75
2.00
2.25
2.50
0.020
788
626
520
444
388
310
257
220
193
171
154
0.022
869
691
573
490
428
341
283
243
212
188
169
0.025
992
788
653
558
487
388
323
276
241
214
193
0.028
1116
885
734
626
547
435
362
310
270
240
216
0.032
1283
1017
842
718
626
499
414
354
310
275
247
0.035
1410
1116
924
788
687
547
454
388
339
301
270
0.042
1710
1351
1116
951
828
659
547
467
408
362
325
0.049
2017
1589
1311
1116
971
771
640
547
477
423
380
0.058
1902
1566
1331
1158
918
761
649
566
502
451
0.065
1768
1501
1304
1033
855
730
636
564
507
0.072
1972
1673
1452
1149
951
811
707
626
562
0.083
1947
1688
1334
1102
939
818
725
650
0.095
1950
1538
1269
1080
941
833
747
0.109
2262
1779
1466
1247
1085
960
861
0.120
2512
1972
1624
1380
1199
1061
951
SEt
where S = Maximum allowable stress from the seamless tubing section of Table 3, psi; E = 0.85 for welded tubing and 1 for seamless tubing;
†Pressure calculated from P = ––––––––
R
t = Minimum tube wall thickness allowed (nominal – 10%), inches; and R
o – 0.4t
o = 1/2 the tube outside diameter, inches.
If maximum allowable stress (S) is chosen from the welded tubing section of Table 3, the 85%
St
*ASTM Grade 16 is in the process of ASME SB338 approval.
P = ––––––––
joint efficiency has already been applied to these values and the following formula applies:
R
The safe external working pressures are shown in Table 5.
o – 0.4t
6

W e l d e d T u b i n g – S a f e
usually not required for titanium.
Proper baffle design and spacing should
W o r k i n g P r e s s u r e s
This permits thinner-walled tubing to
be incorporated into the designs of both
be used than is generally practical with
new and retrofit titanium tube bundles
Safe external working pressures for
other materials.
to avoid flow induced vibration. A
annealed TIMETAL 50A (Gr. 2) welded
comparison of static deflections for
tubing of various diameters and wall
T u b e V i b r a t i o n a n d
titanium tubing and other materials and
thickness for temperatures up to 100°F
R i g i d i t y
the reduction in baffle spacing required
(38°C) are given in Table 5. The
Tube vibration in a heat exchanger
when using titanium tubes is shown in
multiplying factors given in Table 6
occurs when shellside cross flow velocity
Table 7. The data illustrate that a
allow calculation of safe internal
is too high and baffle spacing is too
reduction in baffle space is more effective
pressures for welded tubing for other
distant. Excessive tube vibration may
than an increase in wall thickness in
alloys and to temperatures as high as
result in fatigue failures at support
decreasing deflection. Generally, if
600°F (316°C). The data in Tables 5A
plates or in midspan collision damage.
vibration has not been a problem in a heat
and 6 can be used to select the
Titanium’s hardness and corrosion
exchanger, retubing with titanium using
minimum wall thickness of welded
fatigue resistance act to minimize
proper baffle spacing will eliminate flow
tubing required for internal pressure
vibration damage, but its lower modulus
induced vibration as a potential problem.
and temperature conditions anticipated
(than steel or copper-nickel alloys)
in heat exchanger service. Unlike many
must be considered in design to keep
other materials, a corrosion allowance is
deflection within acceptable limits.
T a b l e 6
M u lt i p ly i n g F a c t o r s t o D e t e r m i n e S a f e I n t e r n a l W o r k i n g P r e s s u r e s
o f A n n e a l e d , W e l d e d T i ta n i u m T u b i n g at E l e vat e d T e m p e r at u r e s *
For Metal Temperatures Not Exceeding, °F (°C)
TIMETAL
ASTM Grade
100 (38)
150 (66)
200 (93)
250 (121)
300 (149)
350 (177)
400 (204)
450 (232)
500 (260)
550 (288)
600 (316)
35A
1
.704
.648
.584
.520
.464
.416
.384
.360
.328
.288
.248
50A
2
50A .15Pd
7
1.000
.960
.872
.792
.726
.672
.616
.576
.528
.496
.456
65A
3
1.304
1.248
1.144
1.040
.936
.832
.744
.664
.600
.536
.480
Code 12
12
1.400
1.400
1.312
1.216
1.136
1.065
1.000
.952
.912
*Select safe working pressure (SWP) for TIMETAL 50A tubing of desired size and gauge from Table 5A. Then use multiplying factor from Table 6 above to determine SWP for desired alloy and temperature.
Example: Determine SWP for TIMETAL Code 12 1"x .065" welded tubing at 350°F. From Table 5A, SWP for 1"x .065" TIMETAL 50A welded tubing at 100°F is 1304 psi. The multiplying factor
for TIMETAL Code 12 at 350°F from Table 6 above is 1.065. The SWP for TIMETAL Code 12 at 350°F is calculated as 1.065 x 1304 = 1389 psi.
T a b l e 7
S u p p o r t P l at e S p a c i n g R e d u c t i o n
% Spacing Reduction
O.D.
Replacement with Titanium
Tube Size
Wall
0.035"
0.049"
Material
(Inches)
(Inches)
BWG
20 BWG
18 BWG
Titanium
3/4”
.049
18
5.5
0.0
.065
16
12.0
5.3
70-30 Cu-Ni
3/4”
.049
18
15.5
9.3
.065
16
20.0
14.1
90-10 Cu-Ni
3/4”
.049
18
11.0
4.6
.065
16
16.0
9.7
Aluminum Bronze
and Admiralty Brass
3/4”
.065
16
13.3
7.0
Titanium
1
.035
20
0.0
0.0
.049
18
7.0
0.0
.065
16
12.4
5.7
70-30 Cu-Ni
1
.049
18
16.0
9.3
.065
16
16.4
10.0
90-10 Cu-Ni
1
.049
18
11.3
4.7
.065
16
16.4
10.0
Aluminum Bronze
and Admiralty Brass
1
.065
16
13.9
7.4
7

  • Description
  • Document Detail
  • Submitter
Mechanical and manufacturing handbook of Titanium for fabrication and Industrial purpose, also available various mechanical electrical industrial manufacture handbook and manual for free

Add New Comment




Related Documents

Titanium - Design and Fabrication Handbook for Industrial Applications

by: manualzon, 40 pages

Mechanical and manufacturing handbook of Titanium for fabrication and Industrial purpose, also available various mechanical electrical industrial manufacture handbook and manual for free

Design and Implementation Guidelines for Web Clients

by: manualzon, 238 pages

This free ebook provides prescriptive recommendations and code samples that enable you to use design patterns and Microsoft .NET Framework programming idioms effectively in the presentation layer of ...

Different File Formats for Logo Design and Marketing Collaterals

by: bruceryder, 2 pages

A lot has been previously written on the subject of logos and design by numerous writers and professional logo designers. With the intention of providing some technical information to the readers, ...

Memorandum of Understanding Between The Office of Regulatory Affairs and The Center for Drug Evaluation and Research on the Pharmaceutical Inspectorate

by: samanta, 4 pages

FDA oversees the quality of drug products using a two-pronged approach involving review of infonnation submitted in applications as well as inspection of manufacturing facilities for confonnance to ...

2009 Lexus IS 350C by 0-60 Magazine and Design Craft Fabrication

by: fred, 3 pages

Lexus IS 350C by 0-60 Magazine and Design Craft Fabrication 2009 - Front Angle View,Lexus IS 350C by 0-60 Magazine and Design Craft Fabrication 2009 - Side View,2009 Lexus IS 350C by 0-60 Magazine ...

Product Life Cycle Design: Integrating Environmental Aspects into Product Design and Development Process at Alfa Laval

by: monkey, 51 pages

Many multinational companies create innovative solutions for products. But do they take into account environmental impacts when they design a product and how do they integrate environmental ...

Evaluation of locally produced Saccharomyces cerevisiae pectinase enzyme for industrial extraction of starch from cassava in Ghana

by: shinta, 5 pages

Enzymes are widely used in industries to improve upon process parameters such as product yield and rate of product formation. Such biotechnological applications are not currently exploited by ...

Describing Logo Design and Logo Designing in a Simple Way

by: bruceryder, 2 pages

Describing Logo Design and Logo Designing in a Simple Way

SNEAK PATH SECURITY ANALYSIS (SPSA) FOR INDUSTRIAL CYBER SECURITY

by: samanta, 51 pages

Sneak path analysis (SPA) is used to identify design flaws in systems that may result in events with adverse consequences. Topological diagrams are constructed for the system and used to identify ...

ETHICAL ISSUES IN THE DESIGN AND CONDUCT OF CLINICAL TRIALS IN DEVELOPING COUNTRIES

by: shinta, 4 pages

THERE has been considerable controversy about the ethics of clinical trials that are sponsored or conducted by groups in industrialized countries but carried out in developing ...

Design and Drafting Notes

by: anwarmirza, 33 pages

Hi, here is a file od design and drafting notes. this for all who study in architecture technology.

Download
Titanium - Design and Fabrication Handbook for Industrial Applications

 

 

Your download will begin in a moment.
If it doesn't, click here to try again.

Share Titanium - Design and Fabrication Handbook for Industrial Applications to:

Insert your wordpress URL:

example:

http://myblog.wordpress.com/
or
http://myblog.com/

Share Titanium - Design and Fabrication Handbook for Industrial Applications as:

From:

To:

Share Titanium - Design and Fabrication Handbook for Industrial Applications.

Enter two words as shown below. If you cannot read the words, click the refresh icon.

loading

Share Titanium - Design and Fabrication Handbook for Industrial Applications as:

Copy html code above and paste to your web page.

loading
Nissan Patrol, Repair Manual, Wiring Diagrams, Data Mining, Hacking Books, Nissan Manual, Civil Engineering, Network Security, Chilton Auto Repair Manual, Mitsubishi Repair

mold guidelines food, sports authority coupon 1, macy s homiday coupon, a legal guide for non citizens answering some frequently asked questions, how to write a thesis a working guide, a windows registry quick reference, rm server side conversion tracking, soil erosion control mulches blankets and mats, ford truck manual service repair workshop owners