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Abstract—Claude E. Shannon invented information theory and
provided the concepts, insights, and mathematical formulations
that now form the basis for modern communication technology. In
a surprisingly large number of ways, he enabled the information
age. A major part of this influence comes from his two-part monu-
mental 1948 paper, “A Mathematical Theory of Communication.”
We attempt here to provide some clues as to how a single person
could have such a major impact. We first describe Shannon’s life
and then study his publications in the communication area. We
next consider his research style in the context of these publications.
Finally, we consider the process under which the impact of his work
evolved from the creation of a beautiful and challenging theory to
the establishment of the central principles guiding digital commu-
nication technology. We end with some reflections on the research
environment that stimulates such work both then and now.

Index Terms—Coding theorems, digital communication, infor-
mation theory, Shannon.

I. CLAUDE SHANNON’S LIFE

A NATIVE of the small town of Gaylord, MI, Claude El-
wood Shannon was born on April 30, 1916. His mother

was a language teacher and principal of the local Gaylord High
School, and his father was a businessman and a Judge of Pro-
bate.

Claude went through the public school system, graduating
from Gaylord High School at the age of 16. The young Claude
led a normal happy childhood with little indication of his
budding genius. As in later life, he was not outgoing, but was
friendly when approached. He was interested in such things
as erector sets and model planes and was curious about how
various devices worked.

After high school, Shannon enrolled in the University of
Michigan, Ann Arbor, where, in 1936, he received bachelor’s
degrees in both electrical engineering and mathematics. His
dual interest in these fields continued through his professional
career. It was at Michigan also that his lifelong interest in
Boolean algebra began.

While trying to decide what to do next, he saw a notice on
a bulletin board advertising for someone to operate Vannevar
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Bush’s differential analyzer (an early analog computer) at the
Massachusetts Institute of Technology. Claude applied for the
job and was accepted as a research assistant and graduate stu-
dent in the MIT Electrical Engineering Department.

After arriving at MIT, Claude became interested both in the
analog aspects of the computer and in the complex switching
circuit controlling it. Along with his academic subjects, he
started to explore the possibility that Boolean algebra could be
used to understand such switching circuits.

After his first academic year, Claude spent the summer of
1937 at Bell Telephone Laboratories working on the relation-
ship between Boolean algebra and switching. Back at MIT in the
fall, he fleshed out these ideas and showed how to use Boolean
algebra both for the analysis and synthesis of relay circuits. This
was used both for his MIT Master’s thesis and for his first pub-
lished paper [3].

The importance of this work was quickly recognized as
providing a scientific approach for the rapidly growing field
of switching. Switching circuits were of great importance in
the telephone industry, and subsequently in the development of
computers. The paper won the 1940 Alfred Noble prize for the
best paper in engineering published by an author under 30. It
is widely recognized today as the foundation of the switching
field and as one of the most important Master’s theses ever
written.

Partly on the advice of Vannevar Bush, Shannon started to
look for a Ph.D. topic in the area of genetics. He switched from
Electrical Engineering to Mathematics and aimed to establish
a mathematical basis for genetics. His Ph.D. dissertation, “An
Algebra for Theoretical Genetics,” was completed in 1940. This
thesis was never published and remained largely unknown until
recently. Its results were important, but have been mostly redis-
covered independently over the intervening years.

Claude was never interested in getting recognition for his
work, and his mind was always full of new ideas, so many of
his results were never published. While he was doing his Ph.D.
research, he was also becoming interested in the fundamental
problems of communication, starting to nibble around the edges
of what would later become his monumental “A Mathemat-
ical Theory of Communication.” He also continued to work on
switching theory. Thus, it is not surprising that he focused on
these areas after completing his thesis rather than on publica-
tion of the thesis.
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The summer of 1940 was spent at Bell Labs exploring further
topics in switching. Claude then accepted a National Research
Fellowship at the Institute for Advanced Study at Princeton. It
was here, during the academic year 1940–1941, that he started
to work seriously on his nascent mathematical theory of com-
munication.

By the summer of 1941, war was imminent, and Shannon
joined an elite group at Bell Labs working on fire control for
anti-aircraft batteries. In his spare time, Claude continued to
work on switching and on his rapidly developing theory of com-
munication. He also published two papers, [28], [29], on the
theory of differential analyzers. These were outgrowths of his
earlier work on the differential analyzer at MIT. Along with de-
veloping a theory for these analog computers, they also con-
tributed to an understanding of how digital computers could ac-
complish similar computational tasks.

During the war, Shannon also became interested in cryptog-
raphy. He realized that the fundamental issues in cryptography
were closely related to the ideas he was developing about com-
munication theory. He was not cleared for the major crypto-
graphic projects at Bell Labs, so he could explain his ideas to the
relevant cryptographers, but they could not talk about their ap-
plications. It appears, however, that his results were important in
the speech scrambling device used by Roosevelt and Churchill
during the war.

Shannon wrote up his cryptography results in the classified
paper, “A Mathematical Theory of Cryptography” in 1945; this
became available in the open literature in 1949 as “Communi-
cation Theory of Secrecy Systems” [4]. This paper established a
mathematical theory for secrecy systems, and has had an enor-
mous effect on cryptography. Shannon’s cryptography work can
be viewed as changing cryptography from an art to a science.

Some of the notions of entropy that Shannon had worked out
for his evolving theory of communication appeared in [4]. Since
he reported these ideas first in his classified cryptography paper,
some people supposed that he first developed them there. In
fact, he worked them out first in the communication context,
but he was not yet ready to write up his mathematical theory of
communication.

By 1948, all the pieces of “A Mathematical Theory of
Communication” [1], [2] had come together in Shannon’s head.
He had been working on this project, on and off, for eight years.
There were no drafts or partial manuscripts—remarkably, he
was able to keep the entire creation in his head. In a sense, this
was necessary, because his theory was about the entire process
of telecommunication, from source to data compression to
channel coding to modulation to channel noise to demodulation
to detection to error correction. The theory concerned the
performance of the very best system possible and how to
approach that performance (without explicitly designing the
system). An understanding of each piece of the system was
necessary to achieve this objective.

The publication of this monumental work caused a great stir
both in the technological world and in the broader intellectual
world. Shannon employed the provocative term “information”
for what was being communicated. Moreover, he was able to
quantify “information” for both sources and channels. This new
notion of information reopened many age-old debates about

the difference between knowledge, information, data, and so
forth. Furthermore, the idea that something called information
could be quantified stimulated much excitement and speculation
throughout the intellectual community.

Whether Shannon’s quantifiable definition of information
will someday have a major impact on larger questions of either
human or artificial intelligence is still an open question. It is
certainly true, however, that [1], [2] totally changed both the
understanding and the design of telecommunication systems,
as we shall show below.

Claude remained in the mathematical research group at Bell
Labs until 1956 and created a constant stream of new and stimu-
lating results. There was a remarkable group of brilliant people
to interact with, and he tended to quickly absorb what they were
working on and suggest totally new approaches. His style was
not that of the expert who knows all the relevant literature in
a field and suggests appropriate references. Rather, he would
strip away all the complexity from the problem and then sug-
gest some extremely simple and fundamental new insight.

Claude tended to work alone for the most part. He would work
on whatever problem fascinated him most at the time, regard-
less of whether it was of practical or conceptual importance or
not. He felt no obligation to work on topics of value to the Bell
System, and the laboratory administration was happy for him to
work on whatever he chose. The Bell Labs administration was
well known for supporting basic research in mathematics and
science, but we must admire them for also encouraging Claude’s
research on topics that appeared slightly frivolous at the time.

In the years immediately after the publication of [1], [2],
Claude had an amazingly diverse output of papers on switching,
computing, artificial intelligence, and games. It is almost as if
all these topics were on the back burner until all the conceptual
issues in his theory of communication had been worked out. In
retrospect, many of these papers have been important for Bell
Labs.

One of the wonderful aspects of Claude is how his work
and play came together. For example, the problem of program-
ming a computer to play chess fascinated him [30], [31]. Chess
is an interesting game from an artificial intelligence perspec-
tive, because there is no randomness in the game, but also there
is no hope for a computer to tabulate all possible moves. The
chess playing programs devised since then, which now can beat
human chess champions, follow in a direct line from Shannon’s
pioneering work.

A similar semiserious project was Theseus. Theseus was a
mechanical mouse, designed to solve mazes. Once it had solved
the maze, it would remember the solution. If the walls of the
maze were changed, or the position of the cheese changed, the
mouse would recognize the change and find the new solution.
Along with being amusing, this was an early and instructive
example of machine learning. A short, but very popular, film
was made of Shannon and Theseus.

A more tongue-in-cheek project of the period was the
Throbac Computer, which calculated using Roman numerals.
Another project was a penny matching machine that searched
for patterns in the adversary’s play.

Shannon had been interested in questions of computability
and Turing machines since before the war, and had a number of
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interesting discussions with Alan Turing during the war. In [32],
he showed how a universal Turing machine could be constructed
with only two internal states. Along with its importance, this is
a beautifully written paper, which provides an excellent tutorial
introduction to Turing machine theory.

In other fundamental research, Claude worked with Edward
Moore on computing with unreliable components [33]. Von
Neumann had looked at this problem earlier, but had obtained
weaker results. Moore and Shannon assumed that the com-
puting elements were error-prone relays, with independently
occurring errors. They showed how to achieve arbitrary
reliability by using enough redundancy. Although this is a
theoretically important result, it does not seem to have impacted
the actual design of reliable computers.

Claude met his wife, Mary Elizabeth (Betty) Moore, at Bell
Labs, where she worked as a numerical analyst. They shared
a good natured intellectual sense of humor and a no-nonsense
but easy-going style of life. They brought up three children,
and although Claude was always thinking about some currently
fascinating idea, he was also always available for his family.
The family shared a love of toys, many of which Claude built
himself. They had collections of unicycles, looms, chess sets,
erector sets, musical instruments, as well as a gasoline powered
pogo stick and the mechanical mouse Theseus. Claude was well
known for riding a unicycle through the halls of Bell Labs while
juggling.

Betty often helped Claude in his work, sometimes checking
his numerical calculations, and sometimes writing his papers as
he dictated them. It seems astonishing that anyone could dictate
a paper and have it come out right without many editing revi-
sions, but Claude disliked writing, and thus kept thinking about
a subject until everything was clear.

In 1956, Claude spent a year visiting MIT, and then the next
year visiting the Center for the Study of Behavioral Sciences in
Palo Alto, CA. In 1958, he accepted a permanent appointment at
MIT as Donner Professor of Science, with an appointment both
in Electrical Engineering and in Mathematics. The Shannons
bought a large gracious home in Winchester, MA, overlooking
Mystic Lake, where there was plenty of room for all their toys
and gadgets, and where they occasionally hosted parties for MIT
students and faculty.

There was a very active group of graduate students and young
faculty studying information theory at MIT around 1958. For
them, Claude Shannon was an idol. Many of these students are
now leaders in the digital communication field, and have made
their mark both in research and practice.

Shannon’s role as a faculty member at MIT was atypical. He
did not teach regular courses, and did not really like to talk about
the same subject again and again. His mind was always focused
on new topics he was trying to understand. He was happy to talk
about these new topics, especially when he obtained some new
insights about them. Thus, he gave relatively frequent seminars.
He once gave an entire seminar course with new research results
at each lecture.

It was relatively rare for him to be the actual supervisor of a
student’s thesis, but yet he had an enormous influence on the
students’ lives. As in his earlier life, he was not outgoing, but he
was very friendly and helpful when contacted. Many students

summoned up the courage to approach him at some point, and
he would usually find an interesting and novel way for them to
look at their problems. These interactions were important in two
ways. First, they helped the students directly in their research,
and second, the students started to understand how to formulate
and approach problems in a more fundamental way. Students
learned to look at carefully constructed toy problems before get-
ting lost in technical detail.

In his research at MIT, Shannon turned back to information
theory and extended the theory in a number of ways as will
be discussed later. He also continued to work or play with his
many mechanical gadgets. He developed an elaborate strategy
for winning at roulette by taking advantage of small imbalances
in the roulette wheel. However, he tired of this before becoming
successful, as he really was not interested in making money with
the scheme, but only in whether it could be done.

He and Betty also became interested in the stock market. He
developed some theories about investment growth that were
never published; however, he gave a seminar on investment
theory at MIT that attracted hundreds of eager listeners. On
a more practical level, Claude and Betty invested very suc-
cessfully, both in the general market and, more particularly, in
several companies started by talented friends.

By the 1980s, it was increasingly clear that Claude was
having memory problems, and he was later diagnosed with
Alzheimer’s disease. He spent the final years of his life in a
private hospital, but was good-natured as usual and enjoyed
Betty’s daily visits. Finally, everything in his body started to
fail at once, and he died on February 24, 2001.

II. A M ATHEMATICAL THEORY OFCOMMUNICATION [1], [2]

This is Shannon’s deepest and most influential work. It es-
tablished a conceptual basis for both the individual parts and
the whole of modern communication systems. It was an archi-
tectural view in the sense that it explained how all the pieces fit
into the overall space. It also devised the information measures
to describe that space.

Before 1948, there was only the fuzziest idea of what a mes-
sage was. There was some rudimentary understanding of how to
transmit a waveform and process a received waveform, but there
was essentially no understanding of how to turn amessageinto
a transmittedwaveform. There was some rudimentary under-
standing of various modulation techniques, such as amplitude
modulation, frequency modulation, and pulse code modulation
(PCM), but little basis on which to compare them.

Most readers of this paper are familiar with Shannon’s theory,
and many have read [1], [2] in detail. However, we want to
briefly retrace this work, in order to illustrate its remarkable
simplicity and unity, its mathematical precision, and its inter-
play between models and reality.

Shannon started by explaining that messages should be
thought of as choices between alternatives. In [1], this set of
alternatives is discrete, whereas in [2] it is arbitrary.

The discrete theory draws on Hartley’s work [5], which
showed that (for many examples) the number of possible
alternatives from a message source over an interval of duration

grows exponentially with , thus suggesting a definition of
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information as the logarithm of this growth. Shannon extended
this idea by attaching a probability measure to the set of
alternatives, and by making a clean separation between source
and channel. He pointed out that it is thechoicebetween a
set of alternatives which is important, not the representation
(integer, letter, hieroglyph, binary code, etc.) of the choice.
The representation of interest to the user may be mapped into
any convenient representation for transmission (for example,
mapping letters of the alphabet into bytes). That mapping is
established ahead of time at both transmitter and receiver, and
then an arbitrarily long sequence of choices can be communi-
cated.

The major example used for illustrating the assignment of
probabilities to alternatives is that of English text (of course, the
particular language is not important). Shannon pointed out that
some letters of the alphabet have higher relative frequency than
others—e.g., “e” is much more likely than “q.” Also, the letters
are not used independently (e.g., “u” typically follows “q”), only
letters that form English words can be used between spaces, and
only sequences of words that obey the rules of English can be
used.

Shannon then proposed studying artificial mathematical lan-
guages that model some, but not all, of these statistical con-
straints. For example, the simplest such model assumes inde-
pendence between successive letters and uses experimentally
derived relative frequencies as letter probabilities. A Markov
source is a more complex model in which the state represents
some known history, such as the previous letter or several letters.
The transition to the next state is then labeled by the next letter,
using experimentally derived conditional relative frequencies as
letter probabilities.

The use of simple toy models to study real situations appears
not to have been common in engineering and science before
Shannon’s work. Earlier authors in various sciences used simple
examples to develop useful mathematical techniques, but then
focused on an assumed “correct” model of reality. In contrast,
Shannon was careful to point out that even a Markov source
with a very large state space would not necessarily be a faithful
model of English text (or of any other data). The purpose of a
model is to provide intuition and insight. Analysis of the model
gives precise answers about the behavior of the model, but can
give only approximate answers about reality.

In summary, data sources are modeled as discrete stochastic
processes in [1], and primarily as finite-state ergodic Markov
sources. Shannon showed in a number of ways, including the
growth rate of alternatives and the number of binary digits per
unit time needed for any representation, that such source models
are characterized by a certain information rate.

In 1948, and even today, to view a message source as a
random process is a rather strange idea, in that we do not
usually think of the messages we create as random. However,
this point of view is appropriate for a communication engineer
who is building a device to communicate unknown messages.
Thus, the interpretation of information in Shannon’s theory
had nothing to do with the “meaning” of the message, but
was simply a measure of the inherent requirements involved
in communicating that message as one of a set of possible
messages.

Shannon next considered channels in [1]. In his picture, a
channel accepts a sequence of letters at its input and produces
a noise-corrupted version of those letters at its output. He intro-
duced the concept of encoding, which had hardly been consid-
ered previously. The channel encoder converts the source output
sequence to an appropriate input sequence for the channel. A
corresponding decoder tries to convert the channel output se-
quence back to the original source sequence.

Shannon then proved his most dramatic and unexpected re-
sult, the channel coding theorem. He shows that a channel is
characterized by a single number, itscapacity. If the informa-
tion rate of a source model is less than the channel capacity, then
it can be transmitted virtually error-free over the channel by ap-
propriate processing. Conversely, if the source information rate
exceeds the channel capacity, then significant distortion must
result no matter what processing is employed.

In [2], these results were extended to analog sources and to
analog channels with waveform inputs and outputs. For analog
sources, the notion of information rate was extended to that of
information rate relative to a fidelity (or distortion) criterion.
Shannon showed that there is a concept of capacity for analog
channels that is essentially the same as for discrete channels,
although the mathematical details are considerably more com-
plex.

Other researchers, such as Kolmogorov and Wiener, were
independently starting to model transmitted waveforms as
stochastic processes at this time. However, they were more
interested in questions of estimation and filtering of a given
waveform in the presence of noise. They had no sense of the
transmitted waveform as an arbitrarily processed function of
the source output, and thus had no sense of alternative choices
or of information. Their work nowhere suggests the notions of
capacity or of information rate.

A. The Source Coding Theorem

Let be a discrete chance variable1 with finitely many out-
comes denoted by . Let be the probability of out-
come . Shannon defined theentropyof as

(1)

The entropy is a function only of the probabilities, and not of the
labels attached to the possible outcomes. As a simple extension,
the conditional entropy of a chance variableconditioned on
another chance variable is

(2)

where and . Viewing
the pair as a chance variable in its own right, the entropy

is given by (1) as

1A chance variable is a mapping from a probability space to a given set. If
the set is the set of real or complex numbers, then the chance variable is called
a random variable.
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It is then easy to see that .
Shannon gave many additional extensions, interpretations,
equalities, and inequalities between entropy expressions which
have been repeated in all texts on Information Theory and need
no repetition here.

For an ergodic Markov chain in which denotes the con-
ditional probability of a transition to state from state and
denotes the steady-state probability of state, it follows from
(2) that the entropy per transition of the Markov chain is

Now consider a source modeled by an ergodic finite-state
Markov chain. Assume throughout that each alphabet letter ap-
pears on at most one outgoing transition from each state, Then,
given an initial state, an output letter sequence corresponds to
a unique state sequence, so the entropy of the source is equal
to that of the Markov chain. If we relabel as , where
denotes the source letter associated with the transition fromto

, then the entropy per transition of the Markov source is

(3)

The main justification for these definitions of entropy is the
source coding theorem [1, Theorems 3 and 4], which relate en-
tropy to the probability of typical long source sequences and
to the number of binary digits required to represent those se-
quences. These theorems have been generalized and reproven
in many ways since 1948. We prefer Shannon’s original proof,
which is very short and eloquent. We give it here (making a
few details more explicit) to demonstrate both its mathematical
precision and its central role later in proving the noisy channel
coding theorem.

We start with the simplest case in which the source output
is a sequence of independent and identically distributed (i.i.d.)
source letters from a finite alphabet, say . Letting

denote the probability2 of letter , the probability of a sample
sequence is . Letting denote
the number of appearances of letterin , this may be rewritten
as

(4)

For the i.i.d. case, define a sequenceof length to be -typ-
ical3 if

for all

2Discrete events of zero probability can often be ignored by leaving them out
of the sample space; here, ifP = 0, it can be removed from the alphabet. For
the nondiscrete case, more care is required.

3Shannon referred to the set of these sequences as the high probability set.
Today this is called a strongly typical sequence, although the detailed use of� is
nonstandard. Our use here is especially simple, although it is restricted to finite
alphabets.

For brevity, we express this condition as .
Taking the logarithm of (4) and dividing by, a -typical se-
quence has the property that

(5)

The -typical sequences are simply those for which the relative
frequency of each letter in the sequence is approximately equal
to the probability of that letter. We see from (5) that

(6)

By the law of large numbers,4 for any and the given ,
there is an such that for all sequence lengths , the
set of -typical sequences has probability

(7)

Equations (6) and (7) comprise the essence of Shannon’s
Theorem 3 for this simple case. They say that, for sufficiently
large , the set of -typical sequences is overwhelmingly
probable, and that each typical sequence has approximately
the same probability in the sense of (6). This is an unusual
sense of approximation, since one typical sequence can have a
probability many times that of another, but it is sufficient for
many of the needs of information theory.

In Shannon’s Appendix 3, this argument is generalized to fi-
nite-state ergodic Markov sources. Again, for each state, let

be the steady-state probability of stateand let be
the transition probability of the letterconditional on state.
For any given sample sequenceof length , and for any given
initial state , let be the number of transitions from state
using letter . Then, as in (4), the probability of given is

We say that a sample sequencewith starting state is -
typical if, for each , the number of transitions
in is .

As in (4), the probability of any given-typical sequence of
length is

(8)

Taking the logarithm and dividing by

(9)

As in the i.i.d. case, the typical sequences for a givenare those
for which the relative frequency of each state transition is close
to the average. The weak law of large numbers for finite-state

4Shannon quoted the strong law of large numbers here, but the weak law is
also sufficient.
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ergodic Markov chains says that, for any and , there
is an such that, for all and all starting states ,
the set of -typical sequences for starting state has
probability

This proves [1, Theorem 3], which says (slightly paraphrased)
the following.

Theorem: For every , , there exists an such that
for all , the set of -typical -sequences for
each starting state satisfies , and for each

(10)

An important use of this theorem is to estimate the number
of -typical sequences. Since

for each -typical sequence, and since

we must have

(11)

Similarly, using the opposite limits on and

(12)

Equations (11) and (12) comprise a slightly weakened version of
Shannon’s Theorem 4. Equation (12) shows that, for any ,
it is possible to map all-typical sequences in into binary
sequences of length at most .

Note that in (10), theboundson for -typical se-
quences are independent of the starting state. Thesetof -typ-
ical sequences is a function of, however. Often is of
interest rather than . Define to be -typical if it is
-typical for at least one starting state. Then, for large enough
, (10) is valid for and (11) and (12) are valid for the en-

larged set of -typical sequences if is replaced by .
The results above ignore source-sequences outside of the

typical set, which is sometimes undesirable. Other results in [1]
use variable-length coding techniques to show that, for large
enough , the set ofall -sequences from an ergodic Markov
source with entropy per letter can be compressed into
an expectedlength arbitrarily close to binary digits
(bits) per letter, but never less than bits per letter. This
result is more important in practice, but [1, Theorems 3 and 4]
give the most fundamental insight into the meaning of entropy.

It is important to remember that these results apply to models
of sources rather than to the sources themselves. It can be
shown that if a sequence is-typical in a refinement of a given

model, then it is also -typical in the given model. However,
since these models are all stationary, and real sources are never
truly stationary (both machines and humans have finite lives),
more elaborate models must be treated with care, and detailed
results about their convergence as may have limited
engineering significance. The real escape from this modeling
dilemma came later with the introduction of universal source
codes (e.g., [6], [7]), which exploit whatever redundancy exists
in the source without the need for a probabilistic model.

B. The Noisy Channel Coding Theorem

The noisy channel coding theorem is certainly the crowning
jewel of [1], [2].

In [1], the input and output are regarded as discrete sequences,
so the channel is viewed as including the modulation and de-
modulation. In [2], the input and output are regarded as wave-
forms, so modulation and demodulation are viewed as part of
the input and output processing. In each case, Shannon defined
various simplified models of real communication channels. For
each such model, the capacity in bits per second is defined.

The noisy channel coding theorem [1, Theorem 11] states that
for any source whose entropy per secondis less than , it
is possible to process (encode) that source at the channel input,
and to process (decode) the received signal at the output, in such
a way that the error rate (in source symbol errors per second)
is as small as desired. Furthermore, if is greater than ,
arbitrarily small equivocation is impossible.

Achieving a small error probability with a given source and
channel when usually requires large delay and high
complexity. Even so, this result was very surprising in 1948
since most communication engineers thought that small error
probability could only be achieved by decreasing. Perhaps
the only reason this result is less surprising today is that we have
heard it so often.

It is now common, even outside the engineering community,
to refer to sources in terms of data rate in bits per second and to
channels in terms of transmitted bits per second.

The typical sequence arguments of the last section help to
understand part of this result. For the models considered, there
are about approximately equiprobable typical source

-sequences whenis large. If the source emits a symbol each
seconds, then the channel can successfully transmit the source

output if and only if the channel can transmit a choice from
approximately equiprobable alternatives per interval

. Put more simply, the source output can be sent if and only
if the channel is capable of transmitting binary digits
reliably per interval for large.

We will make this argument more precise later, but for
now the reader should appreciate the remarkable insight that
Shannon gave us simply from the properties of typical source
sequences. Since a long source output sequence is highly likely
to be one of a set of more or less equiprobable alternatives, there
is no essential loss of generality in mapping these sequences
into binary digits, and then transmitting the binary digits over
the channel.

The above discussion of sources does not explain why it is
possible to transmit binary digits reliably at a rate arbitrarily
close to bits per second. It is surprising that Shannon’s proof
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of this result is as simple as it is. The proof applies the typ-
ical sequence arguments of the last section to the channel input
and output, and then adds one more ingenious twist. Shannon’s
proof is a little sketchy here, but all of the ideas are clearly pre-
sented. We will present his proof for the special case of a discrete
memoryless channel (DMC), adding the requisite details.

The input to a discrete channel is a sequence
of letters from some finite alphabet, denoted

and the output is a corresponding sequence
from a possibly different finite alphabet,

denoted . The channel is noisy in the sense that the
outputs are not determined by the inputs, but rather have only
a stochastic dependence on the input. Thus, given any input
sequence, the output sequence is a stochastic process with
a known distribution conditional on the input. However, the
channel input sequence is arbitrary. Choosing the encoding
relationship between the source output and the channel input is
the most important degree of freedom that we have in designing
a system for reliable communication. The channel input and
output may be described as a joint stochastic process once we
know how this source/channel input processing is done.

We consider a particularly simple type of noisy channel
known as a discrete memoryless channel5 (DMC). Here, each
output in the output sequence is statisti-
cally dependent only on the corresponding input, and at each
time there is a given conditional probability of output

given input , i.e., independent of
. Thus, for any sample input sequence

and output sequence , the conditional
probability is given by

(13)

Shannon began his analysis of a noisy channel by representing
the channel input and output by chance variablesand .
These can be viewed as individual letters or sequences of let-
ters. They involve not only the channel representation, but also
a stochastic input representation. He defined the transmission
rate6 for this input choice as

(14)

Shannon interpreted the transmission rate as thea priori uncer-
tainty about the input less the conditional uncertainty, or
equivocation, about the input after the output is ob-
served. By manipulating entropy expressions, (14) can also be
represented as

(15)

Now view and in these expressions as-sequences
and . From (13)

5Shannon [1] considered a more general channel called a finite-state channel
in which the noise and next state are probabilistic functions of the input and
previous state. Shannon’s proof works in essence for this more general case,
but a number of subtle additional conditions are necessary (see, for example, [8,
Sec. 4.6]).

6Shannon used the variableR for transmission rate, but this rate is now usu-
ally called mutual information.

From (15), then

(16)

with equality if the inputs are statistically independent.
Shannon’s definition of the channel capacity in bits

per symbol for an arbitrary discrete channel is essentially
the supremum of over both the input
distribution and the sequence length. He did not spell out the
specific conditions on the channel for his subsequent results to
be valid. However, for a DMC, (16) shows that this supremum
is the same for all and is achieved by i.i.d. inputs, in which
the input is chosen with the probability that achieves the
maximization

(17)

Shannon gave an explicit formula for when the maximizing
distribution satisfies for all .

We can now outline Shannon’s proof that an arbitrarily small
error probability can be achieved on a DMC when .
We start with an artificial source that produces i.i.d. inputs with
the optimizing input probabilities in (17). With this input
distribution, the input/output pairs

are i.i.d.. We then define the-typical set of these input/output
pairs. The next step is to choose codewords randomly, for
a given . We then define a decoding rule for each such
randomly chosen code. Finally, we evaluate an upper bound
on error probability averaged over this ensemble of randomly
chosen codes. We show that this bound approachesas .
Obviously, some code must be as good as the average for each

.
To give the details, let be an i.i.d. input

sequence with for . The channel
output sequence is then i.i.d. with probabilities

The input/output pairs are i.i.d. with
probabilities . For an input/output se-
quence , let be the number of
input/output pairs that take the value . As in (4), we have

(18)

From the general definition of-typicality for i.i.d. chance vari-
ables, is -typical if for each . As
in (5), for any -typical

(19)
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If is -typical, then is also -typical. To see this, let be
the number of inputs that take the value. Then

Similarly, if is -typical, then is -typical. For a -typical
pair, (6) then gives us the following relations:

(20)

(21)

(22)

Finally, for each -typical output , define thefan to be the
set of input sequencessuch that the pair is -typical. If
is not -typical, then is defined to be empty. For a typical
pair, and .
Thus, the number of elements in must satisfy

(23)

We next choose a code consisting of input sequences
, each of length . We choose each letter of each

sequence independently at random, using letterwith the ca-
pacity-achieving probability . We will then average the error
probability over this ensemble of randomly chosen codewords.

The decoding rule proposed by Shannon is a “typical-set”
rather than a maximum-likelihood decoding rule. Given a re-
ceived sequence, the rule is to choose the unique message
such that the codeword is in the fan . If contains ei-
ther no codewords or more than one codeword, then the decoder
refuses to choose, and a decoding error is said to occur.

If the input to the encoder is message, then a decoding error
will occur only if is not -typical (i.e., if is not -typical
or if ), or if for any other codeword .
Letting be the set of -typical sequences, the union bound
then upper-bounds the probability of error as

(24)

This equation makes use of the fact that, over this random en-
semble of codes, the error probability does not depend on the
message . It also makes use of the fact that the input/output
sequence is a set of independent input/output pairs each
with the probabilities for which the above definition of
-typicality applies.
Each codeword other than the transmitted word is inde-

pendent of the received sequence. Each -typical choice for
has a probability at most . Thus, using the

bound on in (23), which is valid for all , we see that

(25)

The rate of the code in bits per channel letter is .
If , then . Upper-bounding by

, it follows from (24) and (25) that

(26)

To complete the proof of the coding theorem (i.e., that
can be made arbitrarily small for ), we choose

Equation (26) then becomes

For any , we then choose large enough that both
and . Thus, for sufficiently

large , . Since this is true for the average over this
ensemble of codes, it is also true for at least one code.7

The error probability here is the probability that a block
of input data is decoded incorrectly. The probability of error
per binary input (averaged over the block) is at least as small,
and the error probability per transmitted source symbol is
arbitrarily small, provided that errors in the state are prevented
from causing a propagation of source letter errors.

Shannon went one step further in his Theorem 11, where he
states that arbitrarily small error probability can also be achieved
in the case for which . He does not indicate how this
extension is made, but it is quite simple if we interpret error
probability appropriately. For arbitrarily small, let

. We have seen that an arbitrarily small block error
probability is achievable at rate with some block length .
Encode the source sequence into a sequence of these codewords,
but send only a fraction of that sequence, and accept errors
in the remaining fraction of unsent codewords. As an average
in time over the input data, the error probability is then at most

, which can be made arbitrarily small. This does not as-
sert that we can achieve a rate within a single block
with small block error probability, but it does assert that reliable
communication is possible in the time average sense above.

Finally, Shannon gave a converse to the coding theorem when
in terms of the equivocation . In 1948, the Fano

inequality [22] (which lower-bounds the error probability in
terms of equivocation) did not exist, so Shannon simply showed
that . The Fano inequality (and later, the
strong converse) were certainly important, but the fundamental
insights were all there in [1].

In summary, Shannon really did prove the noisy channel
coding theorem, except for spelling out a few of the details. Per-
haps more importantly, he provided fundamental insights that
were very simple, beautiful, and useful in later developments.

C. Analog Channels and Sources

The second part of “A Mathematical Theory of Communica-
tion” [2] extends the results of [1] to analog channels and analog
sources.

Shannon began this extension by presenting the sampling the-
orem as a method of representing waveforms limited to frequen-
cies at most by a sequence of time samples with a sample
interval of seconds. The sampling theorem had been
known earlier to mathematicians, but it had not been used pre-
viously by communication engineers.

From the sampling theorem, Shannon argued that waveforms
limited to a bandwidth and a time have about de-
grees of freedom (in an asymptotic sense, when is large).

7The error probability for such a good code is an average over theM code-
words. A good code can be made uniformly good for each codeword by deleting
the half of the codewords that have highest error probability. Shannon did not
discuss uniformly good codes, but Feinstein’s later proof [34] achieved this uni-
form property.
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The notion of degrees of freedom was known at the time,
largely through the work of Nyquist [10]. Evidently, however,
the signal space concepts of such importance today were in their
infancy then.

The sampling theorem provides a convenient way to represent
analog sources and channels in terms of sequences of chance
variables, thus providing a link between [1] and [2]. In [1],
these sequences consist of discrete chance variables, whereas
in [2], they mainly consist of continuous-valued random vari-
ables. Shannon was certainly aware of the issues of intersymbol
interference that had been so eloquently treated by Nyquist, but
he was primarily interested in simple models that would permit
the development of his theory with the fewest distractions; the
sampling theorem offered such a model.

The entropy of a continuous valued random variablewith
a probability density was then defined as

Many of the relations between entropies, joint entropies, condi-
tional entropies, and so forth are valid for this new type of en-
tropy. Shannon pointed out, however, that this form of entropy
is measured relative to the coordinate system, and is therefore
less fundamental than discrete entropy. Fortunately, however,
the difference of entropies, such as , is es-
sentially independent of the coordinate system.

One particularly important result here is that if is a
Gaussian random variable with mean zero and variance, then

. Moreover, for any random variable
with second moment , . Thus,
a Gaussian random variable has the maximum entropy for a
given second moment.

Shannon next developed one of the best known and impor-
tant results in communication theory, the capacity of the ideal
band-limited additive white Gaussian noise (AWGN) channel.
He considered a channel in which the input is limited to the band

and the noise is white Gaussian noise. The noise out-
side of the signal band is irrelevant, so both input and output can
be represented by sequences of random variables at a rate of
samples per second. Each output variablecan be represented
as the input plus the noise , where the noise variables are
i.i.d. Gaussian with mean zero and variance, and are inde-
pendent of the input.

As with a DMC, the transmission rate
for the input/output sequence is upper-bounded by

with equality when the input variables are independent.
It is easily seen that the transmission rate between input and

output is unbounded unless some constraint is put on the input
variables. The most convenient and practical constraint is on the
input power, either a mean-square constraint on each

input, or a mean-square constraint on a sequence
of inputs. Shannon showed that a Gaussian input distribu-
tion with mean zero and variancemaximizes the transmission
rate for each constraint above, yielding a transmission rate per

letter equal to . The capacity in bits per second
is then given by the famous equation

(27)

Shannon went on to outline how bit sequences with rates less
than or equal to can be transmitted with arbitrarily small error
probability. The Gaussian input and output variables are approx-
imated by finite, finely quantized sets. This yields a DMC whose
capacity can be made arbitrarily close to that of the continuous
channel by arbitrarily fine quantization. Thus, [1, Theorem 11]
can be reused, with appropriate continuity conditions, on the
channel transition probabilities.

The capacity result of (27) is also extended somewhat for the
case of non-Gaussian additive noise variables, again assuming
statistical independence between input and noise. Shannon de-
fined the entropy power of a random variable as the vari-
ance of a Gaussian random variable having the same entropy as

. Clearly, . He then showed that

(28)

The final topic in [2] is a brief outline of rate-distortion theory.
(Shannon would return several years later [13] to develop this
topic much more completely.)

In [1], Shannon had shown how many bits per symbol are re-
quired to represent a discrete source. For a continuous source,
it generally requires an infinite number of binary digits to rep-
resent a sample value of a single variable exactly. Thus, to rep-
resent waveform sources such as voice, it is necessary to accept
some distortion in digital representations, and it is natural to ex-
pect a tradeoff between rate (in bits per symbol) and the level of
distortion.

Rate-distortion theory permits distortion to be defined in a va-
riety of ways, such as mean square, maximum, weighted mean
square, etc. The problem is then to determine the minimum av-
erage number of bits per second that are required to rep-
resent the source within a given mean distortion level.

Shannon’s solution to this problem is entirely in the spirit
of the rest of Information Theory. Let represent the source
output sequence. To be specific, we may taketo be
time samples from a band-limited source.8 Let represent the
corresponding channel output sequence. As usual, the channel
is defined by the conditional probability density ofgiven .
The rate (in bits per second) of a source relative to a mean dis-
tortion is then defined as

(29)

where the infimum is taken over and over probability distri-
butions on such that the mean distortion between sequences

and of length is at most . There are a number of
mathematical issues here involving measurability, but Shannon
was clearly interested in the general idea rather than in pro-
ducing a careful theorem.

Shannon restricted his attention to sources and distortion
measures for which the infimum above can be approximated
arbitrarily closely by a channel with finite alphabets. He then
gave a random coding argument very similar to that of his

8Shannon did not restrict himself in this way and uses a generic form of input.
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Theorem 11. The major difference is that the code consists of
approximately output sequences rather than
a set of input codewords. The argument is again based on
jointly typical input/output sequences. The distortion between
the input sequence and output sequence of each such jointly
typical pair is approximately . For large enough , each
input sequence is with high probability in the fan of one
of these codewords.

The above argument says roughly that a source can be com-
pressed into about bits per second in such a way that the
corresponding binary sequence represents the source with an av-
erage distortion per second of.

However, the expression (29) leads to a much stronger claim.
If a source sequence is processed in a completely arbitrary
way and then passed through a channel of capacitywith
output , then the combination of processor and channel may
be regarded as simply another channel with capacity at most.
It follows that if , then from (29) the average distor-
tion between and must be greater than .

In other words, whether we insist on mappinginto a binary
stream with average distortion at most before transmis-
sion over a channel, or we allow to be processed in any way
at all, a channel of capacity is required to achieve
average distortion . This is the essence of what is now called
the source/channel separation theorem, or, more succinctly, the
binary interface theorem. If a discrete or analog source with a
distortion constraint can be transmitted by any method at all
through a given channel, then it can alternatively be transmitted
by the following two-stage process: first, encode the source into
a binary stream that represents the source within the distortion
constraint; second, using channel coding, send the binary stream
over the channel essentially without errors.

Shannon never quite stated this binary interface property ex-
plicitly, although it is clear that he understood it. This result,
which was essentially established in 1948, forms the principal
conceptual basis for digital communication. Notice that when
we say “digital communication,” we do not imply that the phys-
ical channel is digital, only that the input to the modulator is dis-
crete, and we do not imply that the source is discrete, but only
that it is to be represented by a discrete sequence. Thus, “digital
communication” implies only that there is a discrete interface
between the source and channel, which without loss of gener-
ality can be taken to be binary. This establishes the architectural
principle that all interfaces may be standardized to be binary in-
terfaces without any essential loss in performance. This means
that source coding and channel coding can be treated as indepen-
dent subjects, a fact that has been implicitly (but not explicitly)
recognized since 1948.

Information theory has sometimes been criticized for ig-
noring transmission delay and decoding complexity. However,
if Shannon had been required to take these additional con-
siderations into account, information theory would probably
never have been invented. The simple and powerful results of
information theory come from looking at long time intervals
and using the laws of large numbers. No doubt Shannon saw
that it was necessary to exclude considerations of delay and
complexity in order to achieve a simple and unified theory. For
example, he never even mentions the delay problems involved

in using the sampling theorem as a bridge between discrete
sequences and continuous waveforms. Later work has extended
information theory to address delay and complexity in various
ways.

III. SHANNON’S OTHER MAJOR WORKS IN INFORMATION

THEORY

The seeds for the modern age of digital communication were
all present in [1] and [2]. In subsequent years, Shannon con-
tinued to play a critical role both in generalizing his theory and
in making it more precise. The original papers were in some
sense an extended outline, presenting all the major results and
tools, but not including many later refinements that improved
the theory conceptually and tailored it for applications.

We discuss these subsequent papers briefly, starting with two
important papers that were almost concurrent with [1] and [2].

A. PCM and Noise

The first subsequent paper was “The Philosophy of PCM”
[11], whose coauthors were B. R. Oliver and J. R. Pierce. This
is a very simple paper compared to [1], [2], but it had a tremen-
dous impact by clarifying a major advantage of digital commu-
nication.

In typical large communication systems, a message must
travel through many links before reaching its destination. If
the message is analog, then a little noise is added on each
link, so the message continually degrades. In a digital system,
however, “regenerative repeaters” at the end of each link
can make decisions on the discrete transmitted signals and
forward a noise-free reconstructed version, subject to a small
probability of error. The end-to-end probability of error grows
approximately linearly with the number of links, but, with
Gaussian noise, a negligible increase in signal-to-noise ratio
compensates for this. The only distortion is that introduced in
the initial sampling and quantization.

Uncoded PCM also requires bandwidth expansion, convert-
ing one source sample into multiple bits. This paper conceded
this bandwidth expansion, and did not emphasize the message
of [1], [2] that digital transmission with efficient source and
channel coding is ultimately at least as bandwidth-efficient as
analog transmission. It was many years before this message be-
came widely accepted.

The enduring message of this paper is that digital transmis-
sion has a major advantage over analog transmission in faithful
reproduction of the source when communication is over mul-
tiple-link paths. Today, we look back and say that this is com-
pletely obvious, but in those days engineers were not used to
making even mildly conceptual arguments of this type. Since the
argument was very strong, and there were many tens of decibels
to be gained, PCM and other digital systems started to become
the norm.

It is probable that this paper had a greater impact on actual
communication practice at the time than [1], [2]. However, [1],
[2] has certainly had a greater impact in the long run. Also,
the advantages of PCM would have certainly been explained by
someone other than Shannon, whereas it is difficult to conceive
of someone else discovering the results of [1], [2].
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The second major paper written at about the same time as [1],
[2] is “Communication in the Presence of Noise” [12]. This is a
more tutorial amplification of the AWGN channel results of [2].
This paper reiterates the sampling theorem, now in a geometric
signal-space perspective. The coding theorem for AWGN chan-
nels is proven in detail, using the geometry of orthogonal signals
and the spherical symmetry of the noise. Finally, the theory is
extended to colored Gaussian noise, and the famous power al-
location result now known as “water-pouring” is derived.

This was the paper that introduced many communication re-
searchers to the ideas of information theory. The notions of dis-
crete sources and channels were not very familiar at that time,
and this paper was more accessible to people accustomed to
analog communication.

B. Shannon’s Later Communication Work

After these 1948–1949 papers, Shannon turned his attention
away from information theory for several years while he made
some major contributions to switching, artificial intelligence,
and games. During this interval, he wrote a few short tutorial
papers on information theory, and published “Prediction and En-
tropy of Printed English,” [14], which greatly expanded on the
early results on this topic in [1]. However, his next major con-
tributions to information theory came in the mid-1950s.

The first of these papers is “The Zero-Error Capacity of a
Noisy Channel” [15], a delightful puzzle-type paper whose na-
ture is primarily combinatoric. When no errors at all are per-
mitted, the probabilistic aspects of channel coding disappear,
and only graph-theoretic aspects remain. Surprisingly, the zero-
error capacity seems to be harder to determine than the ordi-
nary capacity. Also, it was shown that feedback from receiver
to transmitter can increase the zero-error capacity of memory-
less channels, which, surprisingly, is not true for the ordinary
capacity.

The second is “Certain Results in Coding Theory for Noisy
Channels” [16], presented at a conference in 1955 and published
in 1957. The main thrust of this paper was to show that the
probability of error could be made to decrease exponentially
with code block length at rates less than capacity.

The coding theorem of [1] was originally presented as an
asymptotic result, with a proof that suggested that very long
constraint lengths would be required to achieve low error prob-
ability at rates close to capacity. In 1955, coding theory was
still in its infancy, and no one had much sense of whether the
coding theorem was simply a mathematical curiosity, or would
someday transform communications practice. Coding theorists
had attempted to find the best codes as a function of block
length, but without success except in a few very special cases.
Information theorists therefore began to seek upper and lower
bounds on error probability as exponential functions of block
length.

The first three such results, [35], [17], [16], appeared in
1955. The first, by Feinstein [35], showed that error probability
decreases exponentially with block length for , but was
not explicit about the exponent. Elias [17] then developed the
random coding upper bound and the sphere-packing lower
bound for the binary symmetric channel and showed that the

exponent in these two bounds agree between a certain critical
rate and capacity. He also showed that this random coding
bound applies to linear codes, encouraging continued linear
code research. Finally, he invented convolutional codes and
showed that they also could achieve the same asymptotic
performance.

Shannon’s paper [16], presented at the same conference as
[17], used Chernoff bounds to develop an exponential random
coding bound for the general DMC and some finite-state chan-
nels. Shannon’s bounds were not as tight as later results, but his
techniques and insights led to those later results.

The third of Shannon’s later major papers on information
theory is “Probability of Error for Optimal Codes in a Gaussian
Channel” [18]. This paper was concerned with the exponential
dependence of error probability on block length for the AWGN
channel. This paper was unusual for Shannon, in that the ideas
were carried through with a high level of detail, with careful at-
tention not only to exponents but also to numerical coefficients.

This paper was the first to introduce an expurgated form of the
random coding bound for transmission rates close to zero. The
sphere-packing bound was also improved for rates near zero.
These were some of the major new ideas needed for later work
on error probability bounds. In addition, Shannon considered
codes with three different constraints on the set of codewords,
first, equal-energy, then peak-energy, and finally average-en-
ergy. The results were substantially the same in all cases, and
one might argue this set the stage for later constant-composi-
tion results.

The fourth is “Coding Theorems for a Discrete Source with
a Fidelity Criterion” [13]. This is an expansion of the results at
the end of [2]. Shannon began here with a simple discrete source
with i.i.d. letters and a single-letter distortion measure, and gave
a simple and detailed proof of the rate-distortion theorem. He
then generalized to more general sources and distortion mea-
sures, finally including analog sources.

The fifth paper in this sequence is “Two-Way Communica-
tion Channels” [19]. This applies information theory to chan-
nels connecting two points and for which communication
is desired in both directions, but where the two directions inter-
fere with each other. This was the first of a long string of papers
on what is now called multiuser or network information theory.

The most striking thing about this paper is how surprisingly
hard the problem is. The most basic information-theoretic
problem here is to find the capacity region for the channel, i.e.,
the maximum rate at which can transmit to as a function of
the rate from to . Shannon showed that the region is convex,
and established inner and outer bounds to the region; however,
in many very simple cases, the region is still unknown.

Fortunately, nicer results were later developed by others for
multiple-access and broadcast channels. It is interesting to note,
though, that Shannon stated, at the end of [19], that he would
write another paper discussing a complete and simple solution to
the capacity region of multiple-access channels. Unfortunately,
that later paper never appeared.

The final paper in this set is “Lower Bounds to Error Prob-
ability for Coding on Discrete Memoryless Channels” [20],
[21], coauthored with the present author and E. R. Berlekamp.
This was Shannon’s final effort to establish tight upper and
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lower bounds on error probability for the DMC. Earlier, Robert
Fano [22] had discovered, but not completely proved, the
sphere-packing lower bound on error probability. In [20], [21],
the sphere-packing bound was proven rigorously, and another
lower bound on error probability was established which was
stronger at low data rates. The proof of the sphere-packing
bound given here was quite complicated; it was later proven in
[23] in a simpler way.

IV. SHANNON’S RESEARCHSTYLE

The great mathematician Kolmogorov summed up Claude
Shannon’s brilliance as a researcher very well. He wrote: “In
our age, when human knowledge is becoming more and more
specialized, Claude Shannon is an exceptional example of a sci-
entist who combines deep abstract mathematical thought with a
broad and at the same time very concrete understanding of vital
problems of technology. He can be considered equally well as
one of the greatest mathematicians and as one of the greatest
engineers of the last few decades.”

While recognizing his genius, however, many mathemati-
cians of the day were frustrated by his style in [1], [2] of
omitting precise conditions on his theorems and omitting
details in his proofs. In Section II, we repeated some of his
major proofs, partly to show that the omitted details are quite
simple when the theorems are specialized to simple cases such
as the DMC.

It appears that Shannon’s engineering side took the dominant
role in his theorem/proof style here. It was clear that DMCs
are not sufficiently general to model interesting phenomena on
many interesting real channels. It was also clear that finite-state
channels are sufficiently general to model those phenomena. Fi-
nally, given Shannon’s almost infallible instincts, it was clear
that the coding theorem was valid for those finite-state channels
appropriate for modeling the real channels of interest.

Was this theorem/proof style, with occasionally imprecise
conditions, another stroke of genius or a failing? Bear in
mind that this paper contained the blueprint of communication
systems for at least the subsequent 50 years. It also explained
clearly why all of these major results are true, under at least a
broad range of conditions. Finally, the ideas form a beautiful
symphony, with repetition of themes and growing power that
still form an inspiration to all of us. Thisis mathematics at its
very best, as recognized by Kolmogorov. If these theorems had
been stated and proven under the broadest possible conditions,
the paper would have been delayed and would probably have
been impenetrable to the engineers who most needed its
unifying ideas.

What was it that made Shannon’s research so great? Was he
simply such a towering genius that everything he touched turned
to gold?

In fact, Shannon’s discoveries were not bolts from the blue.
He worked on and off on his fundamental theory of communica-
tion [1], [2] from 1940 until 1948, and he returned in the 1950s
and 1960s to make improvements on it [13], [16], [18], [20],
[21]. This suggests that part of his genius lay in understanding
when he had a good problem, and in staying with such a problem
until understanding it and writing it up.

This is not to suggest that Shannon listed various problems
of interest, ordered them in terms of importance or interest, and
then worked on them in that order. Rather, he worked on what-
ever problem most fascinated him at the moment. This might
mean working on a curious aspect of some game, extending
his theory of communication, thinking about artificial intelli-
gence, or whatever. A look at his bibliography makes clear how
many complementary interests he had. Working on whatever is
currently fascinating might seem a little frivolous and undisci-
plined, but fortunately Shannon was guided by superb instincts.

Claude Shannon tended to be fascinated by puzzles and toy
problems that exemplified more generic problems. He was fasci-
nated not by problems that required intricate tools for solution,
but rather by simple new problems where the appropriate ap-
proach and formulation were initially unclear. He would often
consider many problems, in various stages of understanding, in
his mind at once. He would jump from one to the other as new
clues jumped into his mind. In the case of [1], [2], where many
totally new ideas had to be fitted together, this gestation process
required eight years. In other simpler cases, such as the seminar
course he gave at MIT, a new idea was developed and presented
twice a week.

Shannon was also fascinated by developing mathematical
theories for subjects (e.g., switching, communication, cryp-
tography, the stock market). This was closely related to his
fascination with puzzles, since in both cases the end point was
understanding the right way to look at a topic. He would ap-
proach this with toy models, sometimes conceptual, sometimes
physical. The toy models would then lead to generalizations
and new toy models.

Shannon’s research style combined the very best of engi-
neering and mathematics. The problems that fascinated him
were engineering problems (in retrospect, even chess is a toy
version of an important engineering problem). Abstraction
and generalization, focusing on both simplicity and good
approximate models, are the essence of both mathematics and
engineering. Turning them into an elegant mathematical theory
is, of course, great mathematics.

Shannon did not like to write, but he wrote very well, with
remarkable clarity and ability to convey his sense of delight in
problems and their solutions. He was not interested in the aca-
demic game of accruing credit for individual research accom-
plishments, but rather with a responsibility for sharing his ideas.
He would state results as theorems, but was clearly more in-
terested in presenting the idea than in the precise statement or
proof.

A. Can Shannon’s Research Style Be Cloned?

Many information theory researchers seem to have absorbed
some aspects of Claude Shannon’s research style. The com-
bination of engineering and mathematics, the delight in ele-
gant ideas, and the effort to unify ideas and tools are relatively
common traits that are also highly admired by others.

The more controversial trait that we focus on here is
Shannon’s habit of working on whatever problem fascinated
him most at the time. A more colorful expression is that he
followed his nose. More specifically, he followed his nose in
uncharted areas where the biggest problem was to understand
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how to look at the problem. We call this Shannon-style research.
We should not confuse this with ivory-tower research, since
Shannon’s research remained very close to engineering topics.

Should we encourage ourselves, and encourage others, to try
to do Shannon-style research? An easy, but I think dangerous,
answer is that Shannon earned the right to follow his nose from
his early research successes. In this view, people who have not
earned that right should be expected to do goal-oriented re-
search, i.e., to solve well-posed problems.

The difficulty with this view is that goal-oriented research
(unless the goal is quite broad and the time scale long) pro-
vides little guidance in how to follow one’s nose successfully.
Engineering education also provides little or no guidance. Engi-
neering students are trained to solve restricted classes of prob-
lems by learning algorithms that lead them through long calcu-
lations with little real thought or insight.

In graduate school, doctoral students write a detailed pro-
posal saying what research they plan to do. They are then ex-
pected to spend a year or more carrying out that research. This
is a reasonable approach to experimental research, which re-
quires considerable investment in buying and assembling the
experimental apparatus. It is a much less reasonable approach to
Shannon-style research, since writing sensibly about uncharted
problem areas is quite difficult until the area becomes somewhat
organized, and at that time the hardest part of the research is fin-
ished.

My belief is that we should encourage both ourselves and
others to acquire and improve the ability to do Shannon-style
research. This is the kind of research that turns an area from an
art into a science. Many areas of telecommunication technology
are still primarily arts, and much of the network field is an art.
Shannon-style research is relatively rare and desperately needed
in these areas.

Shannon rarely wrote about his research goals. In learning
to do Shannon-style research, however, writing about goals in
poorly understood areas is very healthy. Such writing helps in
sharing possible approaches to a new area with others. It also
helps in acquiring the good instincts needed to do Shannon-
style research. The development of good instincts is undoubt-
edly more valuable for a researcher than acquiring more facts
and techniques.

Fortunately, the information theory field has a sizable number
of senior and highly respected researchers who understand both
the nature and the value of Shannon-style research. Effort is
always needed, of course, in educating research administrators
in the distinct character and long-term value of this style.

In summary, Shannon is a notable exemplar of an instinct-
driven style of research which has had remarkable results. It
is important to encourage this style of research in a variety of
engineering fields.

V. SHANNON’S IMPACT ON TELECOMMUNICATION

For the first quarter century after the publication of “A Math-
ematical Theory of Communication,” information theory was
viewed by most informed people as an elegant and deep math-
ematical theory, but a theory that had relatively little to do with
communicationpractice, then or future. At the same time, it was

quickly recognized as the right theoretical way to view commu-
nication systems, as opposed to various mathematical theories
such as probability, filtering, optimization, etc., that dealt only
with isolated aspects of communication (as well as with aspects
of many other fields). In fact, when [1], [2] were republished in
book form [24]9 the following year, “A Mathematical Theory”
had been replaced by “The Mathematical Theory.”

In more recent years, the recognition has been steadily
growing that information theory provides the guiding set of
principles behind the practice of modern digital communi-
cation. On the other hand, it is difficult to separate the roles
of economics, politics, entrepreneurship, engineering, and
research in the growth of new technologies. Thus, we cannot
be definitive about Shannon’s impact, but can only suggest
possibilities.

In what follows, we first discuss Shannon’s impact on infor-
mation theory itself, then his impact on coding theory, and, fi-
nally, the impact of information theory and coding theory on
communication technology.

A. The Evolution of Information Theory

The birth of information theory in 1948 led to intense intel-
lectual excitement in the early 1950s. The Institute of Radio En-
gineers (a precursor to the IEEE) started to publish occasional
issues of the TRANSACTIONS ONINFORMATION THEORY, which
became regular in 1956. There were also a number of symposia
devoted to the subject. The people working in this nascent field
were quite interdisciplinary, probably more so than today. There
were mathematicians trying to give rigorous proofs to precise
statements of the major theorems, there were physicists trying to
interpret the theory from the entropy concepts of statistical me-
chanics, there were engineers curious about applicability, and
there were people from many fields entranced by the word “in-
formation.”

In order to understand the mathematical issues, we need to
understand that probability theory had been put on a rigorous
measure-theoretic foundation by Kolmogorov only in 1933.
Despite Kolmogorov’s genius and insight, mathematical prob-
ability theory remained quite a formal and unintuitive subject
until Feller’s 1950 book [26] showed how to approach many
simpler problems with simple but correct tools. Before 1950,
much of the nonmathematical literature on probability was
vague and confused. Thus, it is not surprising that mathemati-
cians felt the need to generalize and reprove Shannon’s basic
theorems in formal measure-theoretic terms.

McMillan [36] generalized the source coding theorem from
ergodic Markov sources to general ergodic sources in 1953.
Similarly, Feinstein [34] gave a rigorous, measure-theoretic
proof of the noisy channel coding theorem for memory-
less channels in 1954. One of the reasons that we repeated
Shannon’s original proof of these two major theorems (with
some added details) was to clarify the simple elegance of his
proof from both a mathematical and engineering perspective.
Ultimately, it was the simplicity of Shannon’s ideas which led
to engineering understanding.

9Warren Weaver was a coauthor on the book, but his only contribution was to
write a short introduction.
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One of the difficulties that arose from these and subsequent
mathematical attempts was an increasing emphasis on limit the-
orems. As we noted before, sources are not ergodic in reality,
and neither are channels. It is only the models that have these
properties, and the models must provide insight about the re-
ality. Differences between different types of convergence and
small differences between the generality of a class of models do
not always provide such insight.

Fortunately, in the more recent past, pure mathematicians and
engineers have usually worked in harmony in the information
theory field. Pure mathematicians now often pay attention to
modeling issues, engineers often pay attention to mathematical
precision, and the two talk to each other about both models
and precision. Even more important, there are more and more
researchers in the field who, like Shannon, are equally com-
fortable with both engineering and mathematics. It appears that
Shannon is largely responsible for this harmony, since he under-
stood both mathematics and engineering so well and combined
them so well in his work.

The efforts of physicists to link information theory more
closely to statistical mechanics were less successful. It is true
that there are mathematical similarities, and it is true that cross
pollination has occurred over the years. However, the problem
areas being modeled by these theories are very different, so it
is likely that the coupling will remain limited.

In the early years after 1948, many people, particularly those
in the softer sciences, were entranced by the hope of using in-
formation theory to bring some mathematical structure into their
own fields. In many cases, these people did not realize the ex-
tent to which the definition of information was designed to help
the communication engineer send messages rather than to help
people understand the meaning of messages. In some cases, ex-
treme claims were made about the applicability of information
theory, thus embarrassing serious workers in the field.

Claude Shannon was a very gentle person who believed in
each person’s right to follow his or her own path. If someone
said something particularly foolish in a conversation, Shannon
had a talent for making a reasonable reply without making the
person appear foolish. Even Shannon, however, was moved to
write an editorial called the “Bandwagon” in the TRANSACTIONS

ON INFORMATION THEORY [27] urging people, in a very gentle
way, to become more careful and scientific.

In later years, applications of information theory to other
fields, andvice versa, has been much more successful. Many
examples of such interdisciplinary results are given in [9].

B. Coding Theory

It is surprising that Shannon never took great interest in
coding techniques to achieve the results promised by his theory.
At the same time, however, his results provided much of the
motivation for coding research and pointed the direction for
many of the major achievements of coding. At a fundamental
level, the coding theorems and the promise of digital com-
munication provided a direct motivation for discovering both
source and channel codes that could achieve the promise of
information theory.

In source coding, for example, Huffman coding is simple and
beautiful, but clearly depends on Shannon’s early example of

source coding. Universal source coding has been an active and
important research field for many years, but it depends heavily
on both the source modeling issues and the typical sequence ar-
guments in [1]. There is less evidence that modern voice com-
pression depends heavily on rate-distortion theory.

Error-correction coding can be divided roughly into two
parts, algebraic techniques and probabilistic techniques. Both
depend on [17], which depends on [1], for the assurance
that linear codes and convolutional codes are substantially
optimum. Other than this, however, algebraic coding does not
depend heavily on [1].

Probabilistic coding techniques, on the other hand, depend
heavily on Shannon’s work. Both Viterbi decoding and sequen-
tial decoding are based on the premise that most convolutional
codes are good, which comes from [17] and [1]. One can argue
that two important insights in the development of turbo codes
are that most codes of a given constraint length are relatively
good, and that error probability goes down rapidly with con-
straint length. These insights come from [1], [17], and [16].
Low-density parity-check codes are very directly dependent on
[1], [17], and [16].

C. The Evolution of Practical Applications

For many years after 1948, both information theory and
coding theory continued to advance. There were a few high-end
applications, but integrated-circuit technology was not suffi-
ciently advanced for economic large-scale commercial coding
applications. Indeed, the theory also matured very slowly.

There was a certain impatience in the 1960s and 1970s with
the length of time that it was taking for the theory to become
practical. When I received my doctorate in 1960, several people
suggested that information theory was dying. In 1970, many at-
tendees at a major workshop on communication theory seriously
considered the proposition that the field was dead. Curiously,
this was just about the time that digital hardware prices were
falling to the point that coding applications were becoming prac-
tical (as Irwin Jacobs pointed out at that workshop).

Today we are constantly amazed by how quickly new tech-
nologies and applications are developed, and then replaced by
yet newer technologies and applications. Many leaders of in-
dustry and academy seem to accept without question the mes-
sage that engineers must become increasingly quick and nimble,
and thatresearch must become equally quick.

I believe that this latter view is absolutely wrong, and shows
an alarming lack of appreciation for Shannon-style research.
The history of digital communications (and many other fields)
illustrates why this view is wrong. Today, digital communica-
tions has matured to the point that there are many established
methods of accomplishing the various functions required in new
systems. Given this toolbox, new developments and applications
can be truly rapid. However, a modern cellular system, for ex-
ample, is based on various concepts and algorithms that have
been developed over decades, which in turn depend on research
going back to 1948.

Shannon developed his communication theory from 1940
until 1948. During the 50 years since then, communication
theory has developed to its present stage, with seamless con-
nections from abstract mathematics to applications. Imagine a
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research administrator in 1945 saying, “Hurry up, Claude. We
can’t wait forever for your theory—we have real systems to
build.”

Shannon-style research, namely, basic research that creates
insight into how to view a complex, messy system problem,
moves slowly. It requires patience and reflection. It can easily
be destroyed in an atmosphere of frantic activity.

We are all aware of the rapid product cycles in modern en-
gineering companies. New product generations are being de-
signed before the previous generation is even released. Basic
research must be carried on outside the critical paths of these
product cycles. The results of basic research can subsequently
be inserted into the product cycle after it is sufficiently digested.
This requires that researchers be sufficiently close to product de-
velopment.

Shannon frequently said that he was not particularly inter-
ested in applications, but rather was interested in good or inter-
esting problems. It is too late to ask him what he meant by this,
but I suspect he was saying that he was not interested in getting
involved in the product cycle. He was clearly interested in the
generic issues that needed to be understood, but realized that
these issues proceeded by their own clock rather than that of the
product cycle.

It is clear that engineering, now as in the past, requires a range
of talents, including product engineers, generalists who recog-
nize when ideas are ripe for products, mathematicians who re-
fine and generalize theories, and Shannon-style researchers who
provide the conceptual structure on which all the above is based.
The danger today is that the Shannon-style researcher may not
be appreciated in either industrial or academic environments.

Any engineering professor in a university today who pro-
claimed a lack of interest in applications would become an in-
stant pariah. However, it appears that our field is an excellent
example of a field where long-term research on “good prob-
lems” has paid off in a major way. We should probably use this
example to help educate academic, government, and industrial
leaders about the nature and benefit of Shannon-style research.
And we should be very thankful to Claude Shannon for giving
us such a good example.
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