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Abstract—Claude E. Shannon invented information theory and  Bush’s differential analyzer (an early analog computer) at the
provided the concepts, insights, and mathematical formulations Massachusetts Institute of Technology. Claude applied for the

that now form the basis for modern communication technology. In job and was accepted as a research assistant and graduate stu-

a surprisingly large number of ways, he enabled the information . . . .
age. A major part of this influence comes from his two-part monu- dentin the.MIT Electrical Engineering D(_epartment. )
mental 1948 paper, “A Mathematical Theory of Communication.” After arriving at MIT, Claude became interested both in the

We attempt here to provide some clues as to how a single personanalog aspects of the computer and in the complex switching
could have such a major impact. We first describe Shannon’s life  ~jrqyit controlling it. Along with his academic subjects, he

and then study his publications in the communication area. We -
next consider his research style in the context of these publications. started to explore the possibility that Boolean algebra could be

Finally, we consider the process under which the impact of hiswork Used to understand such switching circuits.

evolved from the creation of a beautiful and challenging theory to After his first academic year, Claude spent the summer of

the establishment of the central principles guiding digital commu- 1937 4t Bell Telephone Laboratories working on the relation-
gfﬁﬁfﬁnim?ﬁ;?%mwﬁafgg S\':'J'gr‘] \S/;)On:f ggﬂ?f;g? Sar?g rt]g?,v.reseamh ship between Boolean algebra and switching. Back at MIT in the
) o o fall, he fleshed out these ideas and showed how to use Boolean
m;ggﬁ’irsé@sgﬁ:sg(‘% theorems, digital communication, infor-  5,qepra both for the analysis and synthesis of relay circuits. This

' ' was used both for his MIT Master’s thesis and for his first pub-

lished paper [3].
|. CLAUDE SHANNON'S LIFE The importance of this work was quickly recognized as

NATIVE of the small town of Gaylord, M, Claude EI- provid_ing_ a scier_1tific_ app_roa_ch for the rapidly_growing fiel_d
A wood Shannon was born on April 30, 1916. His moth&f switching. Swnchmg circuits were of great importance in
was a language teacher and principal of the local Gaylord Hi§if telephone industry, and subsequently in the development of
School, and his father was a businessman and a Judge of SRIDPUters. The paper won the 1940 Alfred Noble prize for the
bate. best paper in engineering published by an author under 30. It

Claude went through the public school system, graduatili_ﬁgWidely recognized today as f[he foundation of the switching
from Gaylord High School at the age of 16. The young CIaud@!d and as one of the most important Master's theses ever
led a normal happy childhood with little indication of hisWrtten.
budding genius. As in later life, he was not outgoing, but was Partly on the advice of Vannevar Bush, Shannon started to
friendly when approached. He was interested in such thin@&k for a Ph.D. topic in the area of genetics. He switched from
as erector sets and model planes and was curious about f@ctrical Engineering to Mathematics and aimed to establish
various devices worked. a mathematical basis for genetics. His Ph.D. dissertation, “An

After high school, Shannon enrolled in the University of\lgebrafor Theoretical Genetics,” was completed in 1940. This
Michigan, Ann Arbor, where, in 1936, he received bachelort§esis was never published and remained largely unknown until
degrees in both electrical engineering and mathematics. Hgsently. Its results were important, but have been mostly redis-
dual interest in these fields continued through his professioré@vered independently over the intervening years.
career. It was at Michigan also that his lifelong interest in Claude was never interested in getting recognition for his
Boolean algebra began. work, and his mind was always full of new ideas, so many of

While trying to decide what to do next, he saw a notice omis results were never published. While he was doing his Ph.D.
a bulletin board advertising for someone to operate Vannevasearch, he was also becoming interested in the fundamental

problems of communication, starting to nibble around the edges

Manuscript received August 3, 2001. of what would later become his monumental “A Mathemat-

The author is with the Laboratory for Information and Decision Systemical Theory of Communication.” He also continued to work on
Massachusetts Institute of Technology (MIT), Cambridge, MA 02139 USéWitChing theory. Thus, it is not surprising that he focused on
(e-mail: gallager@lids.mit.edu). . . . .

these areas after completing his thesis rather than on publica-

Communicated by P. M. Siegel, Editor-in-Chief. ' -
Publisher Item Identifier S 0018-9448(01)08945-3. tion of the thesis.

0018-9448/01$10.00 © 2001 IEEE



2682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

The summer of 1940 was spent at Bell Labs exploring furthéhre difference between knowledge, information, data, and so
topics in switching. Claude then accepted a National Reseaforth. Furthermore, the idea that something called information
Fellowship at the Institute for Advanced Study at Princeton. ¢ould be quantified stimulated much excitement and speculation
was here, during the academic year 1940-1941, that he stattedughout the intellectual community.
to work seriously on his nascent mathematical theory of com-Whether Shannon’s quantifiable definition of information
munication. will someday have a major impact on larger questions of either

By the summer of 1941, war was imminent, and Shannduman or artificial intelligence is still an open question. It is
joined an elite group at Bell Labs working on fire control forcertainly true, however, that [1], [2] totally changed both the
anti-aircraft batteries. In his spare time, Claude continued tmderstanding and the design of telecommunication systems,
work on switching and on his rapidly developing theory of comas we shall show below.
munication. He also published two papers, [28], [29], on the Claude remained in the mathematical research group at Bell
theory of differential analyzers. These were outgrowths of hisabs until 1956 and created a constant stream of new and stimu-
earlier work on the differential analyzer at MIT. Along with dedating results. There was a remarkable group of brilliant people
veloping a theory for these analog computers, they also cdn-interact with, and he tended to quickly absorb what they were
tributed to an understanding of how digital computers could aaorking on and suggest totally new approaches. His style was
complish similar computational tasks. not that of the expert who knows all the relevant literature in

During the war, Shannon also became interested in cryptagfield and suggests appropriate references. Rather, he would
raphy. He realized that the fundamental issues in cryptograpstyip away all the complexity from the problem and then sug-
were closely related to the ideas he was developing about camast some extremely simple and fundamental new insight.
munication theory. He was not cleared for the major crypto- Claude tended to work alone for the most part. He would work
graphic projects at Bell Labs, so he could explain his ideas to the whatever problem fascinated him most at the time, regard-
relevant cryptographers, but they could not talk about their aless of whether it was of practical or conceptual importance or
plications. It appears, however, that his results were importantiot. He felt no obligation to work on topics of value to the Bell
the speech scrambling device used by Roosevelt and ChurcBilstem, and the laboratory administration was happy for him to
during the war. work on whatever he chose. The Bell Labs administration was

Shannon wrote up his cryptography results in the classifieeell known for supporting basic research in mathematics and
paper, “A Mathematical Theory of Cryptography” in 1945; thiscience, but we must admire them for also encouraging Claude’s
became available in the open literature in 1949 as “Commumésearch on topics that appeared slightly frivolous at the time.
cation Theory of Secrecy Systems” [4]. This paper established dn the years immediately after the publication of [1], [2],
mathematical theory for secrecy systems, and has had an e@aude had an amazingly diverse output of papers on switching,
mous effect on cryptography. Shannon’s cryptography work caomputing, artificial intelligence, and games. It is almost as if
be viewed as changing cryptography from an art to a sciencall these topics were on the back burner until all the conceptual

Some of the notions of entropy that Shannon had worked dssues in his theory of communication had been worked out. In
for his evolving theory of communication appeared in [4]. Sinceetrospect, many of these papers have been important for Bell
he reported these ideas firstin his classified cryptography papdeabs.
some people supposed that he first developed them there. 1©ne of the wonderful aspects of Claude is how his work
fact, he worked them out first in the communication contexand play came together. For example, the problem of program-
but he was not yet ready to write up his mathematical theory ofing a computer to play chess fascinated him [30], [31]. Chess
communication. is an interesting game from an artificial intelligence perspec-

By 1948, all the pieces of “A Mathematical Theory oftive, because there is no randomness in the game, but also there
Communication” [1], [2] had come together in Shannon’s hea. no hope for a computer to tabulate all possible moves. The
He had been working on this project, on and off, for eight yearshess playing programs devised since then, which now can beat
There were no drafts or partial manuscripts—remarkably, heman chess champions, follow in a direct line from Shannon’s
was able to keep the entire creation in his head. In a sense, glitmeering work.
was necessary, because his theory was about the entire proce8ssimilar semiserious project was Theseus. Theseus was a
of telecommunication, from source to data compression meechanical mouse, designed to solve mazes. Once it had solved
channel coding to modulation to channel noise to demodulatitve maze, it would remember the solution. If the walls of the
to detection to error correction. The theory concerned tieaze were changed, or the position of the cheese changed, the
performance of the very best system possible and how rwuse would recognize the change and find the new solution.
approach that performance (without explicitly designing th&long with being amusing, this was an early and instructive
system). An understanding of each piece of the system wasample of machine learning. A short, but very popular, film
necessary to achieve this objective. was made of Shannon and Theseus.

The publication of this monumental work caused a great stir A more tongue-in-cheek project of the period was the
both in the technological world and in the broader intellectudlhrobac Computer, which calculated using Roman numerals.
world. Shannon employed the provocative term “informationAnother project was a penny matching machine that searched
for what was being communicated. Moreover, he was able fr patterns in the adversary’s play.
guantify “information” for both sources and channels. This new Shannon had been interested in questions of computability
notion of information reopened many age-old debates abautd Turing machines since before the war, and had a number of
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interesting discussions with Alan Turing during the war. In [32kummoned up the courage to approach him at some point, and
he showed how a universal Turing machine could be constructeglwould usually find an interesting and novel way for them to
with only two internal states. Along with its importance, this isook at their problems. These interactions were important in two
a beautifully written paper, which provides an excellent tutoriaays. First, they helped the students directly in their research,
introduction to Turing machine theory. and second, the students started to understand how to formulate

In other fundamental research, Claude worked with Edwaashd approach problems in a more fundamental way. Students
Moore on computing with unreliable components [33]. Voitearned to look at carefully constructed toy problems before get-
Neumann had looked at this problem earlier, but had obtaintaly lost in technical detail.
weaker results. Moore and Shannon assumed that the comin his research at MIT, Shannon turned back to information
puting elements were error-prone relays, with independentheory and extended the theory in a number of ways as will
occurring errors. They showed how to achieve arbitratye discussed later. He also continued to work or play with his
reliability by using enough redundancy. Although this is anany mechanical gadgets. He developed an elaborate strategy
theoretically important result, it does not seem to have impactidt winning at roulette by taking advantage of small imbalances
the actual design of reliable computers. in the roulette wheel. However, he tired of this before becoming

Claude met his wife, Mary Elizabeth (Betty) Moore, at Belkuccessful, as he really was not interested in making money with
Labs, where she worked as a numerical analyst. They shatied scheme, but only in whether it could be done.

a good natured intellectual sense of humor and a no-nonsensie and Betty also became interested in the stock market. He
but easy-going style of life. They brought up three childremleveloped some theories about investment growth that were
and although Claude was always thinking about some currentigver published; however, he gave a seminar on investment
fascinating idea, he was also always available for his familtheory at MIT that attracted hundreds of eager listeners. On
The family shared a love of toys, many of which Claude buik more practical level, Claude and Betty invested very suc-

himself. They had collections of unicycles, looms, chess setessfully, both in the general market and, more particularly, in

erector sets, musical instruments, as well as a gasoline powesederal companies started by talented friends.

pogo stick and the mechanical mouse Theseus. Claude was weBy the 1980s, it was increasingly clear that Claude was

known for riding a unicycle through the halls of Bell Labs whilehaving memory problems, and he was later diagnosed with
juggling. Alzheimer’s disease. He spent the final years of his life in a

Betty often helped Claude in his work, sometimes checkingivate hospital, but was good-natured as usual and enjoyed
his numerical calculations, and sometimes writing his papersBstty’s daily visits. Finally, everything in his body started to
he dictated them. It seems astonishing that anyone could dict@i€at once, and he died on February 24, 2001.

a paper and have it come out right without many editing revi-
sions, but Claude disliked writing, and thus kept thinking abouﬁ
a subject until everything was cleatr.

In 1956, Claude spent a year visiting MIT, and then the next This is Shannon’s deepest and most influential work. It es-
year visiting the Center for the Study of Behavioral Sciences iablished a conceptual basis for both the individual parts and
Palo Alto, CA. In 1958, he accepted a permanent appointmentlz whole of modern communication systems. It was an archi-
MIT as Donner Professor of Science, with an appointment bd#ctural view in the sense that it explained how all the pieces fit
in Electrical Engineering and in Mathematics. The Shannonyo the overall space. It also devised the information measures
bought a large gracious home in Winchester, MA, overlookirtg describe that space.

Mystic Lake, where there was plenty of room for all their toys Before 1948, there was only the fuzziest idea of what a mes-
and gadgets, and where they occasionally hosted parties for MEAge was. There was some rudimentary understanding of how to
students and faculty. transmit a waveform and process a received waveform, but there

There was a very active group of graduate students and youwas essentially no understanding of how to tumessagénto
faculty studying information theory at MIT around 1958. Foa transmittedvaveform There was some rudimentary under-
them, Claude Shannon was an idol. Many of these students st@nding of various modulation techniques, such as amplitude
now leaders in the digital communication field, and have madeodulation, frequency modulation, and pulse code modulation
their mark both in research and practice. (PCM), but little basis on which to compare them.

Shannon’s role as a faculty member at MIT was atypical. He Most readers of this paper are familiar with Shannon’s theory,
did not teach regular courses, and did not really like to talk abcartd many have read [1], [2] in detail. However, we want to
the same subject again and again. His mind was always focubeigfly retrace this work, in order to illustrate its remarkable
on new topics he was trying to understand. He was happy to talknplicity and unity, its mathematical precision, and its inter-
about these new topics, especially when he obtained some &y between models and reality.
insights about them. Thus, he gave relatively frequent seminarsShannon started by explaining that messages should be
He once gave an entire seminar course with new research reghitaight of as choices between alternatives. In [1], this set of
at each lecture. alternatives is discrete, whereas in [2] it is arbitrary.

It was relatively rare for him to be the actual supervisor of a The discrete theory draws on Hartley’s work [5], which
student’s thesis, but yet he had an enormous influence on giwed that (for many examples) the number of possible
students’ lives. As in his earlier life, he was not outgoing, but haternatives from a message source over an interval of duration
was very friendly and helpful when contacted. Many studenis grows exponentially witti’, thus suggesting a definition of

I. A M ATHEMATICAL THEORY OF COMMUNICATION [1], [2]
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information as the logarithm of this growth. Shannon extendedShannon next considered channels in [1]. In his picture, a
this idea by attaching a probability measure to the set ofannel accepts a sequence of letters at its input and produces
alternatives, and by making a clean separation between sowaewise-corrupted version of those letters at its output. He intro-
and channel. He pointed out that it is tbhoice between a duced the concept of encoding, which had hardly been consid-
set of alternatives which is important, not the representatiened previously. The channel encoder converts the source output
(integer, letter, hieroglyph, binary code, etc.) of the choiceequence to an appropriate input sequence for the channel. A
The representation of interest to the user may be mapped intsresponding decoder tries to convert the channel output se-
any convenient representation for transmission (for examptgience back to the original source sequence.
mapping letters of the alphabet into bytes). That mapping isShannon then proved his most dramatic and unexpected re-
established ahead of time at both transmitter and receiver, @wdt, the channel coding theorem. He shows that a channel is
then an arbitrarily long sequence of choices can be commuaharacterized by a single number, é&pacity If the informa-
cated. tion rate of a source model is less than the channel capacity, then
The major example used for illustrating the assignment dfcan be transmitted virtually error-free over the channel by ap-
probabilities to alternatives is that of English text (of course, th@opriate processing. Conversely, if the source information rate
particular language is not important). Shannon pointed out theatceeds the channel capacity, then significant distortion must
some letters of the alphabet have higher relative frequency thrasult no matter what processing is employed.
others—e.g., “e” is much more likely than “g.” Also, the letters In [2], these results were extended to analog sources and to
are not used independently (e.g., “u” typically follows “g”), onlyanalog channels with waveform inputs and outputs. For analog
letters that form English words can be used between spaces, s@idrces, the notion of information rate was extended to that of
only sequences of words that obey the rules of English canibérmation rate relative to a fidelity (or distortion) criterion.
used. Shannon showed that there is a concept of capacity for analog
Shannon then proposed studying artificial mathematical laphannels that is essentially the same as for discrete channels,
guages that model some, but not all, of these statistical caithough the mathematical details are considerably more com-
straints. For example, the simplest such model assumes inglex.
pendence between successive letters and uses experimenta@ther researchers, such as Kolmogorov and Wiener, were
derived relative frequencies as letter probabilities. A Markandependently starting to model transmitted waveforms as
source is a more complex model in which the state represestgchastic processes at this time. However, they were more
some known history, such as the previous letter or several letténterested in questions of estimation and filtering of a given
The transition to the next state is then labeled by the next letteiaveform in the presence of noise. They had no sense of the
using experimentally derived conditional relative frequencies ttansmitted waveform as an arbitrarily processed function of
letter probabilities. the source output, and thus had no sense of alternative choices
The use of simple toy models to study real situations appe&rsof information. Their work nowhere suggests the notions of
not to have been common in engineering and science befeéapacity or of information rate.
Shannon’s work. Earlier authors in various sciences used simple
examples to develop useful mathematical techniques, but tHenThe Source Coding Theorem

focused on an assumed “correct” model of reality. In contrast, | et X be a discrete chance variablaith finitely many out-
Shannon was careful to point out that even a Markov sourggmes denoted by, 2, . ... Let P; be the probability of out-

with a very large state space would not necessarily be a faithfgme;. Shannon defined thentropyof X as
model of English text (or of any other data). The purpose of a

model is to provide intuition and insight. Analysis of the model H(X)=— Z P;log, P;. (1)
gives precise answers about the behavior of the model, but can 7
give only approximate answers about reality.

In summary, data sources are modeled as discrete stochaSig ENtropy is a function only of the probabilities, and not of the
processes in [1], and primarily as finite-state ergodic Markd@bels attgched to the possible outcome;. As asmple extension,
sources. Shannon showed in a number of ways, including i conditional entropy of a chance variableconditioned on
growth rate of alternatives and the number of binary digits pROther chance variable is
unit time needed for any representation, that such source models .
are characterized by a certain information rate. HY]X) = - Z Fipijlogz pij 2)

In 1948, and even today, to view a message source as a e
random process is a rather strange idea, in that we do P@erepr, = Pr(X = i) andp,;; = Pr(Y = j|X = i). Viewing
usually think of the messages we create as random. Howeyg pair XY as a chance variable in its own right, the entropy
this point of view is appropriate for a communication enginqu(Xy) is given by (1) as
who is building a device to communicate unknown messages.

Thus, the interpretation of information in Shannon’s theory H(XY) = _Z Pipi;log, Pipi;-
had nothing to do with the “meaning” of the message, but

was simply a measure of the inherent requirements involve
Py d qA chance variable is a mapping from a probability space to a given set. If

In communicating that message as one of a set of POSS'M&et is the set of real or complex numbers, then the chance variable is called
messages. a random variable.

2%
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It is then easy to see thdi(XY) = H(X) + H(Y|X). For brevity, we express this condition as = nF;(1 £ ¢).
Shannon gave many additional extensions, interpretatiofisking the logarithm of (4) and dividing by, a é-typical se-
equalities, and inequalities between entropy expressions wheglence has the property that

have been repeated in all texts on Information Theory and need

no repetition here. log, Pr(z) _ > % Jog, P,
For an ergodic Markov chain in whighy,,, denotes the con- " R
ditional probability of a transition to staté from states and - Z P,(1+68)log, P;
denotes the steady-state probability of staté follows from 2
(2) that the entropy per transition of the Markov chain is =—H(X)(1+£56). (5)
H(S'|S) = — Z TsPss’ 1082 Do - The é-typical sequences are simply those for which the relative

frequency of each letter in the sequence is approximately equal
to the probability of that letter. We see from (5) that

Now c0n§|der a source modeled by an ergodic finite-state Pr(z) = o= H(X)(15) ©)
Markov chain. Assume throughout that each alphabet letter ap- ’

pears on at most one outgoing transition from each state, Thg0.the Jaw of large numbersfor anye > 0 and the giver > 0

given an initial state, an output letter sequence correspondsy@re is anV, such that for all sequence lengths> Ny, the
a unique state sequence, so the entropy of the source is eqdgy; of s-typical sequences has probability -
to that of the Markov chain. If we relabel,, asp,;, wherei

denotes the source letter associated with the transition $rimm Pr(Ts) > 1—e. (7
s’, then the entropy per transition of the Markov source is

s, s’

Equations (6) and (7) comprise the essence of Shannon’s
Theorem 3 for this simple case. They say that, for sufficiently
large n, the set oféd-typical sequences is overwhelmingly
probable, and that each typical sequence has approximately

The main justification for these definitions of entropy is théhe same probability in the sense of (6). This is an unusual
source coding theorem [1, Theorems 3 and 4], which relate &&nse of approximation, since one typical sequence can have a
tropy to the probability of typical long source sequences afjobability many times that of_ another, but it is sufficient for

to the number of binary digits required to represent those $8&ny of the needs of information theory. , _
quences. These theorems have been generalized and reprovhShannon's Appendix 3, this argument is generalized to fi-
in many ways since 1948. We prefer Shannon’s original prodHte-State ergodic Markov sources. Again, for each statet
which is very short and eloquent. We give it here (making ‘& be the_ _steady—stat_e_ probability Of, Sta‘aﬂd letp,; > 0 be

few details more explicit) to demonstrate both its mathematicg\e transition probability of the letterconditional on state.

precision and its central role later in proving the noisy channgp" any given sample sequencef lengthn, a.n.d forany given
coding theorem. initial statesy, letn,; be the number of transitions from state

We start with the simplest case in which the source outpld%mg letteri. Then, as in (4), the probability af given s, is

H(X|S) = _Z TsPsi 1Og2psi- (3)

s,

is a sequence of independent and identically distributed (i.i.d.) Pr(z|s0) = H P
source letters from a finite alphabet, sy, . . .. Letting F; > o SZ
0 denote the probabiligyof letter¢, the probability of a sample _ ) )
sequence = (i1, ia, ..., in) is [[_, P, . Lettingn; denote We say that a sample sequencavith starting statesy is -
the number of appearances of lett@n z, this may be rewritten typical if, for each(s, ), the number; of (s, 7) transitions
as in2isnwspsi(1 £ 6).
As in (4), the probability of any giveh-typical sequence of
Pr(z) = H P @) lengthn is

Pr(z|so) = H Pl = H p'g;rspsi(li(s)' ®)

st

For the i.i.d. case, define a sequencef lengthn to beés-typ-

ical® if Taking the logarithm and dividing by
nP(1—6) <ni<nP(1+6), forali. los; Pr(zlso) _ (14 6)logy pai
n Sz; 7rspsz( ) 082 Dsi
=—H(X|S)(1£6). 9)

2Discrete events of zero probability can often be ignored by leaving them opt. - . .
of the sample space; here /if = 0, it can be removed from the alphabet. FmAg inthei.i.d. case, the typical sequences for a gigare those

the nondiscrete case, more care is required. for which the relative frequency of each state transition is close
3shannon referred to the set of these sequences as the high probabilityteethe average. The weak law of large numbers for finite-state

Today this is called a strongly typical sequence, although the detailed s of

nonstandard. Our use here is especially simple, although it is restricted to finit¢Shannon quoted the strong law of large numbers here, but the weak law is

alphabets. also sufficient.
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ergodic Markov chains says that, for any 0 andé > 0, there model, then it is als@-typical in the given model. However,

is an Ny such that, for all. > N, and all starting states,, since these models are all stationary, and real sources are never

the set ofé-typical sequenced;(sq) for starting statesp has truly stationary (both machines and humans have finite lives),

probability more elaborate models must be treated with care, and detailed
results about their convergenceas— oo may have limited

Pr(T5(s0)) > 1 —e. engineering significance. The real escape from this modeling

dilemma came later with the introduction of universal source

This proves [1, Theorem 3], which says (slightly paraphrasegddes (e.g., [6], [7]), which exploit whatever redundancy exists

the following. in the source without the need for a probabilistic model.

Theorem: For everye, 6 > 0, there exists aVy such that
for all n > Ny, the setT;(sg) of §-typical n-sequences for _ . . _ _
each starting state, satisfiesPr(7j(so)) > 1—¢, and foreach ~ The noisy channel coding theorem is certainly the crowning

B. The Noisy Channel Coding Theorem

x € Té(so) jewel of [1], [2].
In[1], the input and output are regarded as discrete sequences,
— log, [Pr(x[s0)] so the channel is viewed as including the modulation and de-
> o2t IR/
H(X|S)(A+06) 2 n modulation. In [2], the input and output are regarded as wave-
> H(X|S)(1 - ). (10) forms, so modulation and demodulation are viewed as part of

the input and output processing. In each case, Shannon defined
An important use of this theorem is to estimate the numb¥arious simplified models of real communication channels. For

m(Ts(so)) of 6-typical sequences. Since each such model, the capacity in bits per second is defined.
The noisy channel coding theorem [1, Theorem 11] states that
Pr(z|sp) < 27 H(XI9)A=9) for any source whose entropy per secdidis less thar(,, it
is possible to process (encode) that source at the channel input,
for eaché-typical sequence, and since and to process (decode) the received signal at the output, in such
a way that the error rate (in source symbol errors per second)
Pr(Ts(so)) > 1—¢ is as small as desired. Furthermore Hf is greater tharC,,
arbitrarily small equivocation is impossible.
we must have Achieving a small error probability with a given source and
channel wherf; < C; usually requires large delay and high
m(Ts(s0)) > (1 — )2rHXI9E=0), (11)  complexity. Even so, this result was very surprising in 1948

since most communication engineers thought that small error
probability could only be achieved by decreasitig Perhaps

the only reason this result is less surprising today is that we have
heard it so often.

It is now common, even outside the engineering community,
Equations (11) and (12) comprise a slightly weakened versiontofrefer to sources in terms of data rate in bits per second and to
Shannon’s Theorem 4. Equation (12) shows that, forfamy0, channels in terms of transmitted bits per second.
itis possible to map afi-typical sequences ifis (s ) into binary The typical sequence arguments of the last section help to
sequences of length at most (X |5)(1 + 6). understand part of this result. For the models considered, there

Note that in (10), théboundson Pr(z|s,) for §-typical se- are abou™?X1%) approximately equiprobable typical source
guences are independent of the starting stat€hesetof 6-typ- n-sequences whemis large. If the source emits a symbol each
ical sequences is a function &f, however. OfterPr(z) is of 7 seconds, then the channel can successfully transmit the source
interest rather tha®r(z|so). Definez to be é-typical if it is output if and only if the channel can transmit a choice from
é-typical for at least one starting state. Then, for large enougpproximately2”” (X15) equiprobable alternatives per interval
n, (10) is valid forPr(z) and (11) and (12) are valid for the en-nr. Put more simply, the source output can be sent if and only
larged sefls of 6-typical sequences & is replaced byé. if the channel is capable of transmittind{ (X |S) binary digits

The results above ignore sourgesequences outside of thereliably per intervak.7 for » large.
typical set, which is sometimes undesirable. Other results in [1]We will make this argument more precise later, but for
use variable-length coding techniques to show that, for largew the reader should appreciate the remarkable insight that
enoughn, the set ofall n-sequences from an ergodic MarkovShannon gave us simply from the properties of typical source
source with entropy (X |.S) per letter can be compressed int@sequences. Since a long source output sequence is highly likely
an expectedength arbitrarily close taH (X |S) binary digits to be one of a set of more or less equiprobable alternatives, there
(bits) per letter, but never less thaf( X|.S) bits per letter. This is no essential loss of generality in mapping these sequences
result is more important in practice, but [1, Theorems 3 and #ito binary digits, and then transmitting the binary digits over
give the most fundamental insight into the meaning of entropthe channel.

Itis important to remember that these results apply to modelsThe above discussion of sources does not explain why it is
of sources rather than to the sources themselves. It canpossible to transmit binary digits reliably at a rate arbitrarily
shown that if a sequence dstypical in a refinement of a given close toC; bits per second. Itis surprising that Shannon’s proof

Similarly, using the opposite limits dP (2| s ) andPr(Ts(so))

m(Ts(s0)) < 2 HXISIUFe), (12)
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of this result is as simple as it is. The proof applies the tyf~rom (15), then

ical sequence arguments of the last section to the channel input n

and output, and then adds one more ingenious twist. Shannon'sf = H(Y) - H(Y|X) < Z H(Y;) — HYi|X:) (16)
proof is a little sketchy here, but all of the ideas are clearly pre- k=1

sented. We will present his proof for the special case of a discrgigy equality if the inputs are statistically independent.
memoryless channel (DMC), adding the requisite details. Shannon's definition of the channel capacity in bits

The input to a discrete channel is a sequedXe = Lo gymhol for an arbitrary discrete channel is essentially
(X1, Xo, ...) of letters from some finite alpha_bet, denotegh o supremum oft [H(X) — H(X|Y)] over both the input
{1,2,...} and the output is a corresponding S€qUENgRsyribution and the sequence lengthHe did not spell out the
Y = (Y1, Y3, ...) from a possibly different finite alphabet, e ific conditions on the channel for his subsequent results to
denoted{1, 2, ...}. The channel is noisy in the sense that thge \3iid. However, for a DMC, (16) shows that this supremum
outputs are not determined by the inputs, but rather have oblVia same for alh and is achieved by i.i.d. inputs, in which

a stochastic dependence on the input. Thus, given any ingyl jnnt; is chosen with the probability; that achieves the
sequence, the output sequence is a stochastic process Wilyimization

a known distribution conditional on the input. However, the

channel input sequence is arbitrary. Choosing the encoding

relationship between the source output and the channel input is C = max Z Pp;;log,
the most important degree of freedom that we have in designing P P i,j

a system for reliable communication. The channel input and

output may be described as a joint stochastic process onceSt@nnon gave an explicit formula for when the maximizing
know how this source/channel input processing is done.  distribution satisfies”; > 0 for all <.

We consider a particularly simple type of noisy channel We can now outline Shannon’s proof that an arbitrarily small
known as a discrete memoryless chahr{@MC). Here, each error probability can be achieved on a DMC whHp < C;.
outputY; in the output sequend = (Y1, Y, ...) is statisti- We start with an artificial source that produces i.i.d. inputs with
cally dependent only on the corresponding infigt and at each the optimizing input probabilities?; in (17). With this input
time k there is a given conditional probability; > 0 of output  distribution, the input/output pairs
J given inputi, i.e., Pr(Ys = j| Xy = ) = p;; independent of
k. Thus, for any sample input sequence= (z1, 2, ..., Z,) (w1, 1) (2, ¥2),5 - - (@0, Yn))
and output sequencg = (y1, ¥2, --., ¥n), the conditional
probability Pr(y|x) is given by

Pij
17
> Pipyy "
1

are i.i.d.. We then define th&typical set of these input/output
" pairs. The next step is to choo®®? codewords randomly, for
Pr(y|z) = H Paaye- (13) agivenk < C. We then define a decoding rule for each such

bl randomly chosen code. Finally, we evaluate an upper bound

Shannon began his analysis of a noisy channel by represenfigerror probability averaged over this ensemble of randomly

the channel input and output by chance variablesndY. chosen codes. We show that this bound approathss — oc.

These can be viewed as individual letters or sequences of [@Pviously, some code must be as good as the average for each

ters. They involve not only the channel representation, but algo

a stochastic input representation. He defined the transmissiod©0 give the details, letX;, X», ..., X,,) be ani.i.d. input

raté I for this input choice as sequence witPr(X3=:) = P, for 1 < k& < n. The channel
[ = H(X) - H(X|Y) (14) output sequence is then i.i.d. with probabilities

Shannon interpreted the transmission rate as iwori uncer- Pr(Y=j) = Zpipij_

tainty H(.X) about the input less the conditional uncertainty, or
equivocation,H (X |Y") about the input after the output is ob- _ - _
served. By manipulating entropy expressions, (14) can also bée input/output pairs(; Y1, XYz, ..., X,,Y,, are i.i.d. with

represented as probabilitiesPr(X,Y,=ij) = P,p;;. For an input/output se-
quencery = z1y1, T2¥2, - - -, Tn¥n, letn;; be the number of
I=HY)-HY|X). (15) input/output pairs:;y; that take the valugj. Asin (4), we have

Now view X andY in these expressions assequenceX = Pr(zy) = H (Ppi; )™ (18)

(X4, ..., X,)andY = (Y1, ..., Y,). From (13)
H(Y|X) =) H(Vi|Xy).
k

2%

From the general definition @ktypicality for i.i.d. chance vari-

. ableszy is 6-typical if n;; = nF;p;;(1 £ 6) for eachi, j. As
Shannon [1] considered a more general channel called a finite-state chanpe, i

in which the noise and next state are probabilistic functions of the input a?ﬁj {5)’ for anys-typical zy

previous state. Shannon’s proof works in essence for this more general case,

but a number of subtle additional conditions are necessary (see, for example, [8, log, Pr(-’t?l) )
uta v ple. (8, _ 2822 R S Pipis(1 % 8) log, P
6Shannon used the variabfefor transmission rate, but this rate is now usu- L

ally called mutual information. =H(XY)(1156). (29)
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If zy is 5-typical, thenz is alsos-typical. To see this, let; be Equation (26) then becomes
the number of inputs that take the valudhen

Pr(E) < (1 — Pr(T3)) 4+ 27"/2,

For anye > 0, we then choose: large enough that both
Pr(T5) > 1 —¢/2 and2""/2 < ¢/2. Thus, for sufficiently
largen, Pr(E) < e. Since this is true for the average over this
ensemble of codes, it is also true for at least one ¢ode.

Pr(zy) =27 XY+ (20)  The error probability here is the probability that a block
Pr(z) = 2~ "HO0£8) (21) o©f input data is decoded incorrectly. The probability of error
Pr(y) _o—nH(Y)(1£8) (22) per binary input (avergged over the bI(_)ck) is at least as sma_lll,

and the error probability per transmitted source symbol is

Finally, for eachs-typical outputy, define thefan £, to be the arbitrarily small, provided that errors in the state are prevented

set of input sequencassuch that the paity is 5-typical. If y  from causing a propagation of source letter errors.

is noté-typical, thenFy is defined to be empty. For a typicey Shannon went one step further in his Theorem 11, where he

pair, Pr(y) < 27"HO)A-9) andPr(zy) > 2-"HEY)(1+8)  states thatarbitrarily small error probability can also be achieved

Thus, the number of elements iy must satisfy in the case for whichit = C. He does not indicate how this

|F,| < 20T (XY (A+0)—nHT (1)(1-0) extension is made,_ but it is quite S|rr_1ple. if we interpret error
probability appropriately. Foy > 0 arbitrarily small, letkR’ =

R(1 — n). We have seen that an arbitrarily small block error

We next choose a code consisting &f input sequences probabilitye is achievable at rat&’ with some block length.

x1, ..., ¢y, each of lengtm. We choose each letter of eachEncode the source sequence into a sequence of these codewords,

sequence independently at random, using letteith the ca- butsend only a fractioh— r of that sequence, and accept errors

pacity-achieving probability’;. We will then average the errorin the remaining fractiom of unsent codewords. As an average
probability over this ensemble of randomly chosen codewords.time over the input data, the error probability is then at most

The decoding rule proposed by Shannon is a “typical-set+ 7, which can be made arbitrarily small. This does not as-
rather than a maximum-likelihood decoding rule. Given a reert that we can achieve a ralie = C within a single block
ceived sequencg, the rule is to choose the unique message with small block error probability, but it does assert that reliable
such that the codeworg,, is in the fanF,,. If F, contains ei- communication is possible in the time average sense above.
ther no codewords or more than one codeword, then the decoddrinally, Shannon gave a converse to the coding theorem when
refuses to choose, and a decoding error is said to occur. R > C'interms of the equivocatioH (X |Y"). In 1948, the Fano

If the input to the encoder is messagethen a decoding error inequality [22] (which lower-bounds the error probability in
will occur only if z,,,y is noté-typical (i.e., ify is noté-typical terms of equivocation) did not exist, so Shannon simply showed
orif z,, ¢ Fy), orif z,, € F, for any other codewore,,,. that H(X|Y) > R — C. The Fano inequality (and later, the

Letting 7 be the set of-typical zy sequences, the union boundstrong converse) were certainly important, but the fundamental

then upper-bounds the probability of error as insights were all there in [1].

Pr(E) < (1 — Pr(T3)) + (M — 1) Pr(X,y € Fy). (24) In_ summary, Shannon really_ did prove the noisy c_hannel
coding theorem, except for spelling out a few of the details. Per-

This equation makes use of the fact that, over this random s more importantly, he provided fundamental insights that

semble of codes, the error probability does not depend on {Rgre very simple, beautiful, and useful in later developments.
messagen. It also makes use of the fact that the input/output

sequence&X .Y is a set of independent input/output pairs eactc. Analog Channels and Sources

with the probabilitiesF; p,; for which the above definition of The second part of “A Mathematical Theory of Communica-

é-typicality applies. .
Each codeword . other than the transmitted word is inde_tlon [2] extends the results of [1] to analog channels and analog

_ . ! sources.
pendent of the received sequedeEaché-typical choice for . . . .
X,/ has a probability at mosr—"#()(1-5)_ Thus, using the Shannon began this extension by presenting the sampling the-

bound on %, | in (23), which is valid for ally, we see that oremas a method of representing v_vaveforms Iimitgd to frequen-
i i cies at most¥ by a sequence of time samples with a sample

Pr(X s € Fy) <27 mHEQ=0gnt HXHHENFHAONpan ] of 1/(2W) seconds. The sampling theorem had been
= g~ ACHIHCO+HXY)+H)]} (25) known earlier to mathematicians, but it had not been used pre-
viously by communication engineers.

From the sampling theorem, Shannon argued that waveforms
limited to a bandwidth¥ and a timéel” have abouR7W de-
grees of freedom (in an asymptotic sense, Whié#i is large).

Similarly, if zy is é-typical, theny is é-typical. For aé-typical
zy pair, (6) then gives us the following relations:

_ on(H(XIY)+6(H(XY)+H(Y))) 23)

The rate of the code in bits per channel letteRis- % log, M.
If R < C,theny = C — R > 0. Upper-bounding/ — 1 by
M, it follows from (24) and (25) that

Pr(E) < (1—Pr(Ts)) 42~ InHSHEOFHEVIHHOL (26
( ) ( ( 6)) (26) "The error probability for such a good code is an average ovekfheode-

To complete the proof of the coding theorem (i.e., tAatZ)  words. A good code can be made uniformly good for each codeword by deleting

can be made arbitrarily small fdt < C), we choose the half of the codewords that have highest error probability. Shannon did not
discuss uniformly good codes, but Feinstein’s later proof [34] achieved this uni-

b=n/2HX)+ HXY)+H(Y))} form property.
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The notion of27'W degrees of freedom was known at the timdetter equal to} log,(P+N)/N.The capacity in bits per second
largely through the work of Nyquist [10]. Evidently, howeveris then given by the famous equation
the signal space concepts of such importance today were in their P+ N
infancy then. Cr = Wlog, —o— (@7)

The sampling theorem provides a convenient way to repres&annon went on to outline how bit sequences with rates less
analog sources and channels in terms of sequences of changg or equal t@”, can be transmitted with arbitrarily small error
variables, thus providing a link between [1] and [2]. In [1]probability. The Gaussian input and output variables are approx-
these sequences consist of discrete chance variables, whegaged by finite, finely quantized sets. This yields a DMC whose
in [2], they mainly consist of continuous-valued random vareapacity can be made arbitrarily close to that of the continuous
ables. Shannon was certainly aware of the issues of intersym@®annel by arbitrarily fine quantization. Thus, [1, Theorem 11]
interference that had been so eloquently treated by Nyquist, Bdh be reused, with appropriate continuity conditions, on the
he was primarily interested in simple models that would pernghannel transition probabilities.
the development of his theory with the fewest distractions; the The capacity result of (27) is also extended somewhat for the

sampling theorem offered such a model. case of non-Gaussian additive noise variables, again assuming
The entropy of a continuous valued random variablevith  statistical independence between input and noise. Shannon de-
a probability density(x) was then defined as fined the entropy poweN of a random variabléZ as the vari-
ance of a Gaussian random variable having the same entropy as
H(X)=— /p(a:) log p(x) di. Z.Clearly,N < N = Z2. He then showed that
P+ N P+ N
Many of the relations between entropies, joint entropies, condi- W log, N <0< Wlog, N (28)

tional entropies, and so forth are valid for this new type of efrhe final topic in [2] is a brief outline of rate-distortion theory.
tropy. Shannon pointed out, however, that this form of entropghannon would return several years later [13] to develop this
is measured relative to the coordinate system, and is therefgjgic much more completely.)
less fundamental than discrete entropy. Fortunately, however, [1], Shannon had shown how many bits per symbol are re-
the difference of entropies, such &5.X) — H(X|Y), is es- quired to represent a discrete source. For a continuous source,
sentially independent of the coordinate system. it generally requires an infinite number of binary digits to rep-
One particularly important result here is that i is a resenta sample value of a single variable exactly. Thus, to rep-
Gaussian random variable with mean zero and varidnd@en  resent waveform sources such as voice, it is necessary to accept
H(X) = ;log, 2rcN. Moreover, for any random variabl€  some distortion in digital representations, and it is natural to ex-
with second momenk2 < N, H(X) < $log,2meN. Thus, pect a tradeoff between rate (in bits per symbol) and the level of
a Gaussian random variable has the maximum entropy fogigtortion.
given second moment. Rate-distortion theory permits distortion to be defined in a va-
Shannon next developed one of the best known and impeéiety of ways, such as mean square, maximum, weighted mean
tant results in communication theory, the capacity of the idegduare, etc. The problem is then to determine the minimum av-
band-limited additive white Gaussian noise (AWGN) channeadrage numbeR(D) of bits per second that are required to rep-
He considered a channelin which the input is limited to the bamgsent the source within a given mean distortion ldvel
(=W, W) and the noise is white Gaussian noise. The noise out-Shannon’s solution to this problem is entirely in the spirit
side of the signal band is irrelevant, so both input and output cafthe rest of Information Theory. LeX represent the source
be represented by sequences of random variables at a eté ofoutput sequence. To be specific, we may takeo be 2W T
samples per second. Each output variahlean be representedtime samples from a band-limited soufcket ¥ represent the
as the inputX;, plus the noiseZ,, where the noise variables arecorresponding channel output sequence. As usual, the channel
i.i.d. Gaussian with mean zero and varianiégand are inde- is defined by the conditional probability density Bfgiven X .

pendent of the input. The rate (in bits per second) of a source relative to a mean dis-
As with a DMC, the transmissionrale= H(X)— H(X|Y) tortion D is then defined as
for the input/output sequence is upper-bounded b H(X)-HX|Y
put/output seq pp y R(D) = inf LX) . (X]Y) (29)
> [H(Xy) — H(X,|Y3)] where the infimum is taken ovéF and over probability distri-
k butions onX such that the mean distortion between sequences
with equality when the input variables are independent. X andY oflength2WT"is at mostDT'. There are a number of

It is easily seen that the transmission rate between input digthematical issues here involving measurability, but Shannon
output is unbounded unless some constraint is put on the in¥(@S clearly interested in the general idea rather than in pro-
variables. The most convenient and practical constraint is on @#éFing a careful theorem. . o
input power, either a mean-square constréd_t,ﬁt< Poneach Shannon restricted his attention to sources and distortion

input, o a mean-square constralft < 21 TP on a sequence measures for which the infimum above can be approximated

of 2WT inputs. Shannon showed that a Gaussian inputdistribaL‘Jr-bltrarlly closely by a channel with finite alphabets. He then

. ; . L o ave a random coding argument very similar to that of his
tion with mean zero and variané&maximizes the transm|SS|ong g arg y
rate for each constraint above, yielding a transmission rate peiShannon did not restrict himself in this way and uses a generic form of input.
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Theorem 11. The major difference is that the code consistsinfusing the sampling theorem as a bridge between discrete
approximately22WTR(D)(1+8) gutput sequences rather tharsequences and continuous waveforms. Later work has extended
a set of input codewords. The argument is again based iaformation theory to address delay and complexity in various
jointly typical input/output sequences. The distortion betweemays.
the input sequence and output sequence of each such jointly
typical pair is approximatehDT". For large enouglf’, each |, SpaNNON'S OTHER MAJOR WORKS IN INFORMATION
input sequence is with high probability in the fai{y) of one THEORY
of these codewords. . L

The above argument says roughly that a source can be comihe seed_s for the modern age of digital communication were
pressed into abou®(D) bits per second in such a way that thé?II present in [1] and [2]. In subsequent years, Shannon con-

corresponding binary sequence represents the source with arfAyed t0 play a critical role both in generalizing his theory and
erage distortion per second Bt In making it more precise. The original papers were in some

However, the expression (29) leads to a much stronger clai§nse an extended outline, presenting all the major results and
ools, but not including many later refinements that improved

If a source sequencX is processed in a completely arbitrar . ) .
d P P y the theory conceptually and tailored it for applications.

d th d th h h | of ityvith ; . . .
way an en passe rough a channel of capacity We discuss these subsequent papers briefly, starting with two

outputY’, then the combination of processor and channel mar}/1 :
be regarded as simply another channel with capacity at Giost important papers that were almost concurrent with [1] and [2].

It follows that if C, < R(D), then from (29) the average distor- .
tion betweenX andY must be greater thab. A. PCM and Noise

In other words, whether we insist on mappilignto abinary ~ The first subsequent paper was “The Philosophy of PCM”
stream with average distortion at mds{D) before transmis- [11], whose coauthors were B. R. Oliver and J. R. Pierce. This
sion over a channel, or we allo¥ to be processed in any wayis a very simple paper compared to [1], [2], but it had a tremen-
at all, a channel of capacity; > R(D) is required to achieve dous impact by clarifying a major advantage of digital commu-
average distortioD. This is the essence of what is now calledhication.
the source/channel separation theorem, or, more succinctly, thén typical large communication systems, a message must
binary interface theorem. If a discrete or analog source withtravel through many links before reaching its destination. If
distortion constraint can be transmitted by any method at #fle message is analog, then a little noise is added on each
through a given channel, then it can alternatively be transmittiiok, so the message continually degrades. In a digital system,
by the following two-stage process: first, encode the source irttowever, “regenerative repeaters” at the end of each link
a binary stream that represents the source within the distortican make decisions on the discrete transmitted signals and
constraint; second, using channel coding, send the binary strdamvard a noise-free reconstructed version, subject to a small
over the channel essentially without errors. probability of error. The end-to-end probability of error grows

Shannon never quite stated this binary interface property epproximately linearly with the number of links, but, with
plicitly, although it is clear that he understood it. This resulGaussian noise, a negligible increase in signal-to-noise ratio
which was essentially established in 1948, forms the principgdmpensates for this. The only distortion is that introduced in
conceptual basis for digital communication. Notice that wheahe initial sampling and quantization.
we say “digital communication,” we do not imply that the phys- Uncoded PCM also requires bandwidth expansion, convert-
ical channel is digital, only that the input to the modulator is disSng one source sample into multiple bits. This paper conceded
crete, and we do not imply that the source is discrete, but orihis bandwidth expansion, and did not emphasize the message
that it is to be represented by a discrete sequence. Thus, “digita[1], [2] that digital transmission with efficient source and
communication” implies only that there is a discrete interfagghannel coding is ultimately at least as bandwidth-efficient as
between the source and channel, which without loss of genanalog transmission. It was many years before this message be-
ality can be taken to be binary. This establishes the architecturame widely accepted.
principle that all interfaces may be standardized to be binary in-The enduring message of this paper is that digital transmis-
terfaces without any essential loss in performance. This meaien has a major advantage over analog transmission in faithful
that source coding and channel coding can be treated as indepeproduction of the source when communication is over mul-
dent subjects, a fact that has been implicitly (but not explicitly)ple-link paths. Today, we look back and say that this is com-
recognized since 1948. pletely obvious, but in those days engineers were not used to

Information theory has sometimes been criticized for ignaking even mildly conceptual arguments of this type. Since the
noring transmission delay and decoding complexity. Howevergument was very strong, and there were many tens of decibels
if Shannon had been required to take these additional cdo-be gained, PCM and other digital systems started to become
siderations into account, information theory would probablhe norm.
never have been invented. The simple and powerful results oft is probable that this paper had a greater impact on actual
information theory come from looking at long time interval€ommunication practice at the time than [1], [2]. However, [1],
and using the laws of large numbers. No doubt Shannon sgj has certainly had a greater impact in the long run. Also,
that it was necessary to exclude considerations of delay ahé advantages of PCM would have certainly been explained by
complexity in order to achieve a simple and unified theory. F@omeone other than Shannon, whereas it is difficult to conceive
example, he never even mentions the delay problems involvefdsomeone else discovering the results of [1], [2].
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The second major paper written at about the same time as fponent in these two bounds agree between a certain critical
[2] is “Communication in the Presence of Noise” [12]. This is aate and capacity. He also showed that this random coding
more tutorial amplification of the AWGN channel results of [2]bound applies to linear codes, encouraging continued linear
This paper reiterates the sampling theorem, now in a geometrime research. Finally, he invented convolutional codes and
signal-space perspective. The coding theorem for AWGN chastiowed that they also could achieve the same asymptotic
nels is proven in detail, using the geometry of orthogonal signgisrformance.
and the spherical symmetry of the noise. Finally, the theory isShannon’s paper [16], presented at the same conference as
extended to colored Gaussian noise, and the famous powerl&F], used Chernoff bounds to develop an exponential random
location result now known as “water-pouring” is derived. coding bound for the general DMC and some finite-state chan-

This was the paper that introduced many communication rreels. Shannon’s bounds were not as tight as later results, but his
searchers to the ideas of information theory. The notions of diechniques and insights led to those later results.
crete sources and channels were not very familiar at that time;The third of Shannon’s later major papers on information
and this paper was more accessible to people accustomedhgpry is “Probability of Error for Optimal Codes in a Gaussian
analog communication. Channel” [18]. This paper was concerned with the exponential
dependence of error probability on block length for the AWGN
channel. This paper was unusual for Shannon, in that the ideas
were carried through with a high level of detail, with careful at-

After these 1948-1949 papers, Shannon turned his attentigAtion not only to exponents but also to numerical coefficients.
away from information theory for several years while he made This paper was the first to introduce an expurgated form of the
some major contributions to switching, artificial intelligencegandom coding bound for transmission rates close to zero. The
and games. During this interval, he wrote a few short tutorighhere-packing bound was also improved for rates near zero.
papers oninformation theory, and published “Prediction and Enhese were some of the major new ideas needed for later work
tropy of Printed English,” [14], which greatly expanded on then error probability bounds. In addition, Shannon considered
early results on this topic in [1]. However, his next major corcodes with three different constraints on the set of codewords,
tributions to information theory came in the mid-1950s. first, equal-energy, then peak-energy, and finally average-en-

The first of these papers is “The Zero-Error Capacity of @rgy. The results were substantially the same in all cases, and
Noisy Channel” [15], a delightful puzzle-type paper whose nane might argue this set the stage for later constant-composi-
ture is primarily combinatoric. When no errors at all are petion results.
mitted, the probabilistic aspects of channel coding disappear;The fourth is “Coding Theorems for a Discrete Source with
and only graph-theoretic aspects remain. Surprisingly, the zegoFidelity Criterion” [13]. This is an expansion of the results at
error capacity seems to be harder to determine than the orlie end of [2]. Shannon began here with a simple discrete source
nary capacity. Also, it was shown that feedback from receivgiith i.i.d. letters and a single-letter distortion measure, and gave
to transmitter can increase the zero-error capacity of memogysimple and detailed proof of the rate-distortion theorem. He
less channels, which, surprisingly, is not true for the ordinatiien generalized to more general sources and distortion mea-
capacity. sures, finally including analog sources.

The second is “Certain Results in Coding Theory for Noisy The fifth paper in this sequence is “Two-Way Communica-
Channels” [16], presented at a conference in 1955 and publishigth Channels” [19]. This applies information theory to chan-
in 1957. The main thrust of this paper was to show that thels connecting two pointd and B for which communication
probability of error could be made to decrease exponentiallydesired in both directions, but where the two directions inter-
with code block length at rates less than capacity. fere with each other. This was the first of a long string of papers

The coding theorem of [1] was originally presented as am what is now called multiuser or network information theory.
asymptotic result, with a proof that suggested that very long The most striking thing about this paper is how surprisingly
constraint lengths would be required to achieve low error probard the problem is. The most basic information-theoretic
ability at rates close to capacity. In 1955, coding theory wasoblem here is to find the capacity region for the channel, i.e.,
still in its infancy, and no one had much sense of whether thige maximum rate at whicB can transmit tod as a function of
coding theorem was simply a mathematical curiosity, or wouttie rate fromA to B. Shannon showed that the region is convex,
someday transform communications practice. Coding theoristsd established inner and outer bounds to the region; however,
had attempted to find the best codes as a function of blotkmany very simple cases, the region is still unknown.
length, but without success except in a few very special casesFortunately, nicer results were later developed by others for
Information theorists therefore began to seek upper and lowaultiple-access and broadcast channels. It is interesting to note,
bounds on error probability as exponential functions of blodkough, that Shannon stated, at the end of [19], that he would
length. write another paper discussing a complete and simple solution to

The first three such results, [35], [17], [16], appeared ithe capacity region of multiple-access channels. Unfortunately,
1955. The first, by Feinstein [35], showed that error probabilityat later paper never appeared.
decreases exponentially with block length for< C, but was The final paper in this set is “Lower Bounds to Error Prob-
not explicit about the exponent. Elias [17] then developed tladility for Coding on Discrete Memoryless Channels” [20],
random coding upper bound and the sphere-packing lowad], coauthored with the present author and E. R. Berlekamp.
bound for the binary symmetric channel and showed that tiis was Shannon’s final effort to establish tight upper and

B. Shannon’s Later Communication Work
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lower bounds on error probability for the DMC. Earlier, Robert This is not to suggest that Shannon listed various problems
Fano [22] had discovered, but not completely proved, tlod interest, ordered them in terms of importance or interest, and
sphere-packing lower bound on error probability. In [20], [21then worked on them in that order. Rather, he worked on what-
the sphere-packing bound was proven rigorously, and anotleger problem most fascinated him at the moment. This might
lower bound on error probability was established which wamean working on a curious aspect of some game, extending
stronger at low data rates. The proof of the sphere-packihig theory of communication, thinking about artificial intelli-
bound given here was quite complicated; it was later provengence, or whatever. A look at his bibliography makes clear how
[23] in a simpler way. many complementary interests he had. Working on whatever is
currently fascinating might seem a little frivolous and undisci-
plined, but fortunately Shannon was guided by superb instincts.

Claude Shannon tended to be fascinated by puzzles and toy

The great mathematician Kolmogorov summed up Claugoblems that exemplified more generic problems. He was fasci-
Shannon’s brilliance as a researcher very well. He wrote: “irated not by problems that required intricate tools for solution,
our age, when human knowledge is becoming more and mdg rather by simple new problems where the appropriate ap-
specialized, Claude Shannon is an exceptional example of a g¢pach and formulation were initially unclear. He would often
entist who combines deep abstract mathematical thought with@nsider many problems, in various stages of understanding, in
broad and at the same time very concrete understanding of vhid mind at once. He would jump from one to the other as new
problems of technology. He can be considered equally well eléies jumped into his mind. In the case of [1], [2], where many
one of the greatest mathematicians and as one of the gredeigily new ideas had to be fitted together, this gestation process
engineers of the last few decades.” required eight years. In other simpler cases, such as the seminar

While recognizing his genius, however, many mathemagourse he gave at MIT, a new idea was developed and presented
cians of the day were frustrated by his style in [1], [2] ofwice a week.
omitting precise conditions on his theorems and omitting Shannon was also fascinated by developing mathematical
details in his proofs. In Section I, we repeated some of hiBeories for subjects (e.g., switching, communication, cryp-
major proofs, partly to show that the omitted details are quitegraphy, the stock market). This was closely related to his
simple when the theorems are specialized to simple cases stastgination with puzzles, since in both cases the end point was
as the DMC. understanding the right way to look at a topic. He would ap-

It appears that Shannon’s engineering side took the domin@f@ach this with toy models, sometimes conceptual, sometimes
role in his theorem/proof style here. It was clear that DMQghysical. The toy models would then lead to generalizations
are not sufficiently general to model interesting phenomena 8nad new toy models.
many interesting real channels. It was also clear that finite-statéShannon’s research style combined the very best of engi-
channels are sufficiently general to model those phenomena.!Féering and mathematics. The problems that fascinated him
nally, given Shannon’s almost infallible instincts, it was cleavere engineering problems (in retrospect, even chess is a toy
that the coding theorem was valid for those finite-state channggysion of an important engineering problem). Abstraction
appropriate for modeling the real channels of interest. and generalization, focusing on both simplicity and good

Was this theorem/proof style, with occasionally imprecisapproximate models, are the essence of both mathematics and
conditions, another stroke of genius or a failing? Bear #@ngineering. Turning them into an elegant mathematical theory
mind that this paper contained the blueprint of communicatid® of course, great mathematics.
systems for at least the subsequent 50 years. It also explaine§hannon did not like to write, but he wrote very well, with
clearly why all of these major results are true, under at least@markable clarity and ability to convey his sense of delight in
broad range of conditions. Finally, the ideas form a beautif@roblems and their solutions. He was not interested in the aca-
symphony, with repetition of themes and growing power thgemic game of accruing credit for individual research accom-
still form an inspiration to all of us. This mathematics at its plishments, but rather with a responsibility for sharing his ideas.
very best, as recognized by Kolmogorov. If these theorems hdé would state results as theorems, but was clearly more in-
been stated and proven under the broadest possible conditié@kgsted in presenting the idea than in the precise statement or
the paper would have been delayed and would probably ha@of.
been impenetrable to the engineers who most needed its
unifying ideas. A. Can Shannon’s Research Style Be Cloned?

What was it that made Shannon’s research so great? Was higlany information theory researchers seem to have absorbed
simply such a towering genius that everything he touched turnsegime aspects of Claude Shannon’s research style. The com-
to gold? bination of engineering and mathematics, the delight in ele-

In fact, Shannon’s discoveries were not bolts from the blugant ideas, and the effort to unify ideas and tools are relatively
He worked on and off on his fundamental theory of communicaemmon traits that are also highly admired by others.
tion [1], [2] from 1940 until 1948, and he returned in the 1950s The more controversial trait that we focus on here is
and 1960s to make improvements on it [13], [16], [18], [20]Shannon’s habit of working on whatever problem fascinated
[21]. This suggests that part of his genius lay in understandihgm most at the time. A more colorful expression is that he
when he had a good problem, and in staying with such a probléotiowed his nose. More specifically, he followed his nose in
until understanding it and writing it up. uncharted areas where the biggest problem was to understand

IV. SHANNON’'S RESEARCHSTYLE
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how to look at the problem. We call this Shannon-style researcjuickly recognized as the right theoretical way to view commu-
We should not confuse this with ivory-tower research, singgcation systems, as opposed to various mathematical theories
Shannon’s research remained very close to engineering topisach as probability, filtering, optimization, etc., that dealt only
Should we encourage ourselves, and encourage others, tantity isolated aspects of communication (as well as with aspects
to do Shannon-style research? An easy, but | think dangeroofmany other fields). In fact, when [1], [2] were republished in
answer is that Shannon earned the right to follow his nose frdmok form [24} the following year, “A Mathematical Theory”
his early research successes. In this view, people who have mad been replaced by “The Mathematical Theory.”
earned that right should be expected to do goal-oriented redn more recent years, the recognition has been steadily
search, i.e., to solve well-posed problems. growing that information theory provides the guiding set of
The difficulty with this view is that goal-oriented researchprinciples behind the practice of modern digital communi-
(unless the goal is quite broad and the time scale long) pation. On the other hand, it is difficult to separate the roles
vides little guidance in how to follow one’s nose successfullpf economics, politics, entrepreneurship, engineering, and
Engineering education also provides little or no guidance. Engésearch in the growth of new technologies. Thus, we cannot
neering students are trained to solve restricted classes of pro@-definitive about Shannon’s impact, but can only suggest
lems by learning algorithms that lead them through long calcpessibilities.
lations with little real thought or insight. In what follows, we first discuss Shannon’s impact on infor-
In graduate school, doctoral students write a detailed praation theory itself, then his impact on coding theory, and, fi-
posal saying what research they plan to do. They are then egily, the impact of information theory and coding theory on
pected to spend a year or more carrying out that research. Tétisnmunication technology.
is a reasonable approach to experimental research, which re-
quires considerable investment in buying and assembling the The Evolution of Information Theory
experimental apparatus. Itis amuch less reasonable approach t,q pirth of information theory in 1948 led to intense intel-
Shannon-style research, since writing sensibly about uncharfeg | excitement in the early 1950s. The Institute of Radio En-
problem areas is quite difficult until the area becomes somewhgho o< (3 precursor to the IEEE) started to publish occasional
_orgamzed, and at that time the hardest part of the research is ies of the RANSACTIONS ONINFORMATION THEORY, which
ished. L became regular in 1956. There were also a number of symposia
My belief is that we should encourage both ourselves apgl nteq to the subject. The people working in this nascent field
others to acquire and improve the ability to do Shannon-styje, e quite interdisciplinary, probably more so than today. There
res_earch. T_h|s is the kind of research that turns an area from\ﬁé‘re mathematicians trying to give rigorous proofs to precise
artinto a science. Many areas of telecommunication technologytte ments of the major theorems, there were physicists trying to
are still primarily arts, and much of the network field is an arfnterpret the theory from the entropy concepts of statistical me-

Shannon-style research is relatively rare and desperately nee&%ics, there were engineers curious about applicability, and

in these areas. , there were people from many fields entranced by the word “in-
Shannon rarely wrote about his research goals. In learniggmation.”

to do Shannon-style research, however, writing about goals Ny orger to understand the mathematical issues, we need to
poorly understood areas is very healthy. Such writing helps i jerstand that probability theory had been put on a rigorous
sharing possible approaches to a new area with others. It gl30,5yre-theoretic foundation by Kolmogorov only in 1933.
helps in acquiring the good instincts needed to do Shanng§isgpite Kolmogorov's genius and insight, mathematical prob-
style research. The development of good instincts is undoulkijity theory remained quite a formal and unintuitive subject
edly more valuable for a researcher than acquiring more fagfsiii Feller's 1950 book [26] showed how to approach many

and techniques. _ _ . simpler problems with simple but correct tools. Before 1950,
Fortunately, the information theory field has a sizable nUMbg{,ch of the nonmathematical literature on probability was

of senior and highly respected researchers who understand %{Bue and confused. Thus, it is not surprising that mathemati-

the nature and the value of Shannon-style research. Effort;jgns felt the need to generalize and reprove Shannon’s basic

always needed, of course, in educating research administra{tssrems in formal measure-theoretic terms.

in the distinct character ar_1d long-term value of this stylg. _ McMillan [36] generalized the source coding theorem from
In summary, Shannon is a notable exemplar of an instinglrgodic Markov sources to general ergodic sources in 1953

driven style of research which has had remarkable resultsgiiyjjarly, Feinstein [34] gave a rigorous, measure-theoretic

is important to encourage this style of research in a variety Bfoof of the noisy channel coding theorem for memory-

engineering fields. less channels in 1954. One of the reasons that we repeated
Shannon’s original proof of these two major theorems (with
V. SHANNON'S IMPACT ON TELECOMMUNICATION some added details) was to clarify the simple elegance of his

proof from both a mathematical and engineering perspective.

For the first quarter century after the publication of “A MathUItimater, it was the simplicity of Shannon’s ideas which led
ematical Theory of Communication,” information theory wag, engineering understanding.

viewed by most informed people as an elegant and deep math-
ematical .thepry, bUt.a theory that had relatively I'm? to 9'0 With awarren Weaver was a coauthor on the book, but his only contribution was to
communicatiorpractice then or future. At the same time, it waswrite a short introduction.
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One of the difficulties that arose from these and subsequesaturce coding. Universal source coding has been an active and
mathematical attempts was an increasing emphasis on limit tiraportant research field for many years, but it depends heavily
orems. As we noted before, sources are not ergodic in realityy both the source modeling issues and the typical sequence ar-
and neither are channels. It is only the models that have thggenents in [1]. There is less evidence that modern voice com-
properties, and the models must provide insight about the pression depends heavily on rate-distortion theory.
ality. Differences between different types of convergence andError-correction coding can be divided roughly into two
small differences between the generality of a class of modelsgiarts, algebraic techniques and probabilistic techniques. Both
not always provide such insight. depend on [17], which depends on [1], for the assurance

Fortunately, in the more recent past, pure mathematicians dhdt linear codes and convolutional codes are substantially
engineers have usually worked in harmony in the informatiaptimum. Other than this, however, algebraic coding does not
theory field. Pure mathematicians now often pay attention tiepend heavily on [1].
modeling issues, engineers often pay attention to mathematicaProbabilistic coding techniques, on the other hand, depend
precision, and the two talk to each other about both moddisavily on Shannon’s work. Both Viterbi decoding and sequen-
and precision. Even more important, there are more and mdigd decoding are based on the premise that most convolutional
researchers in the field who, like Shannon, are equally comndes are good, which comes from [17] and [1]. One can argue
fortable with both engineering and mathematics. It appears thiaat two important insights in the development of turbo codes
Shannon is largely responsible for this harmony, since he undare that most codes of a given constraint length are relatively
stood both mathematics and engineering so well and combirgabd, and that error probability goes down rapidly with con-
them so well in his work. straint length. These insights come from [1], [17], and [16].

The efforts of physicists to link information theory moreLow-density parity-check codes are very directly dependent on
closely to statistical mechanics were less successful. It is tfid, [17], and [16].
that there are mathematical similarities, and it is true that cross
pollination has occurred over the years. However, the problém The Evolution of Practical Applications

areas being modeled by these theories are very different, so iFor many years after 1948, both information theory and
is likely that the coupling will remain limited. coding theory continued to advance. There were a few high-end

In the early years after 1948, many people, particularly thog@plications, but integrated-circuit technology was not suffi-
in the softer sciences, were entranced by the hope of using dfently advanced for economic large-scale commercial coding
formation theory to bring some mathematical structure into theipplications. Indeed, the theory also matured very slowly.
own fields. In many cases, these people did not realize the exThere was a certain impatience in the 1960s and 1970s with
tent to which the definition of information was designed to helghe length of time that it was taking for the theory to become
the communication engineer send messages rather than to gtical. When | received my doctorate in 1960, several people
people understand the meaning of messages. In some casessigygested that information theory was dying. In 1970, many at-
treme claims were made about the applicability of informatioendees at a major workshop on communication theory seriously
theory, thus embarrassing serious workers in the field. considered the proposition that the field was dead. Curiously,

Claude Shannon was a very gentle person who believedtiifis was just about the time that digital hardware prices were
each person’s right to follow his or her own path. If someorfgyling to the point that coding applications were becoming prac-
said something particularly foolish in a conversation, Shann@gal (as Irwin Jacobs pointed out at that workshop).
had a talent for making a reasonable reply without making theToday we are constantly amazed by how quickly new tech-
person appear foolish. Even Shannon, however, was moveg#jogies and applications are developed, and then replaced by
write an editorial called the “Bandwagon” in th@ANSACTIONS yet newer techn0|ogies and app”cations_ Many leaders of in-
ON INFORMATION THEORY [27] urging people, in a very gentle dustry and academy seem to accept without question the mes-
way, to become more careful and scientific. sage that engineers must become increasingly quick and nimble,

In later years, applications of information theory to othegnd thatesearch must become equally quick
fields, andvice versahas been much more successful. Many | pelieve that this latter view is absolutely wrong, and shows
examples of such interdisciplinary results are givenin [9].  an alarming lack of appreciation for Shannon-style research.
The history of digital communications (and many other fields)
illustrates why this view is wrong. Today, digital communica-

It is surprising that Shannon never took great interest tions has matured to the point that there are many established
coding techniques to achieve the results promised by his theangethods of accomplishing the various functions required in new
At the same time, however, his results provided much of tlsgstems. Given this toolbox, new developments and applications
motivation for coding research and pointed the direction faan be truly rapid. However, a modern cellular system, for ex-
many of the major achievements of coding. At a fundamentample, is based on various concepts and algorithms that have
level, the coding theorems and the promise of digital conbeen developed over decades, which in turn depend on research
munication provided a direct motivation for discovering botlgoing back to 1948.
source and channel codes that could achieve the promise o8hannon developed his communication theory from 1940
information theory. until 1948. During the 50 years since then, communication

In source coding, for example, Huffman coding is simple artieory has developed to its present stage, with seamless con-
beautiful, but clearly depends on Shannon’s early example redctions from abstract mathematics to applications. Imagine a

B. Coding Theory
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research administrator in 1945 saying, “Hurry up, Claude. We[3]
can’t wait forever for your theory—we have real systems to
build.” 8

Shannon-style research, namely, basic research that creat¢s
insight into how to view a complex, messy system problem, 6]
moves slowly. It requires patience and reflection. It can easily
be destroyed in an atmosphere of frantic activity. [7]

We are all aware of the rapid product cycles in modern en-
gineering companies. New product generations are being degg)
signed before the previous generation is even released. Basic
research must be carried on outside the critical paths of thesE
product cycles. The results of basic research can subsequentiy
be inserted into the product cycle after it is sufficiently digested,
This requires that researchers be sufficiently close to product dé-l—l]
velopment. [12]

Shannon frequently said that he was not particularly inter—13]
ested in applications, but rather was interested in good or inter-
esting problems. It is too late to ask him what he meant by thig14]
but | suspect he was saying that he was not interested in gettirﬂgs]
involved in the product cycle. He was clearly interested in the
generic issues that needed to be understood, but realized tH
these issues proceeded by their own clock rather than that of trﬂﬁ]
product cycle.

Itis clear that engineering, now as in the past, requires a rang&®!
of talents, including product engineers, generalists who recogsg
nize when ideas are ripe for products, mathematicians who re-
fine and generalize theories, and Shannon-style researchers W[|38]
provide the conceptual structure on which all the above is based.
The danger today is that the Shannon-style researcher may not
be appreciated in either industrial or academic environments.

Any engineering professor in a university today who pro-[22]
claimed a lack of interest in applications would become an in-
stant pariah. However, it appears that our field is an exceller@ 3
example of a field where long-term research on “good probf24]
lems” has paid off in a major way. We should probably use thiﬁ2 |
example to help educate academic, government, and industriaF
leaders about the nature and benefit of Shannon-style resear¢fl
And we should be very thankful to Claude Shannon for givingm]
us such a good example.

(28]

ACKNOWLEDGMENT [29]

The author wishes to thank D. Forney for countless suggessg;
tions for sharpening the meaning, rephrasing the awkward ex-
pressions, and changing the overall organization of this pape[ﬁ”
J. Massey has also contributed greatly. Other very helpful rgsz;
viewers include |. Csiszar, S. Savari, B. Schein, E. Telatar, and

D. Tse. [33]

REFERENCES [34]

[1] C.E. Shannon, “A mathematical theory of communication (Part2g|I [35]
Syst. Tech. Jvol. 27, pp. 379-423, 1948.

[2] —, “A mathematical theory of communication (Part 2Bell Syst. [36]

Tech. J, vol. 27, pp. 623656, 1948.

2695

——, “A symbolic analysis of relay and switching circuitsTrans.
AIEE, vol. 57, pp. 713-723, 1938.

——, “Communication theory of secrecy systemBgIl Syst. Tech. J.
vol. 28, pp. 656—715, 1949.

R. V. L. Hartley, “Transmission of informationBell Syst. Tech. Jvol.

7, p. 535, 1924.

A. Lempel and J. Ziv, “On the complexity of finite sequenceldsEE
Trans. Inform. Theoryol. IT-22, pp. 75-81, Jan. 1976.

J. Ziv and A. Lempel, “Compression of individual sequences by vari-
able-rate coding,l[EEE Trans. Inform. Theoryol. IT-24, pp. 530-536,
Sept. 1978.

R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

9] T. M. Cover and J. A. Thomaglements of Information Theary New

York: Wiley, 1991.

H. Nyquist, “Certain topics in telegraph transmission theofiydns.
AIEE, vol. 47, p. 617, 1928.

B. M. Qliver, J. R. Pierce, and C. E. Shannon, “The philosophy of PCM,”
Proc. IRE vol. 36, pp. 1324-1331, 1948.

C. E. Shannon, “Communication in the presence of noiBet. IRE

vol. 37, pp. 10-21, Jan. 1949.

——, “Coding theorems for a discrete source with a fidelity criterion,”
in IRE Nat. Conv. Rec1959, pp. 142-163.

——, “Prediction and entropy of printed EnglishBell Syst. Tech. J.
vol. 30, pp. 50-64, 1951.

——, “The zero-error capacity of a noisy channdRE Trans. Inform.
Theory vol. IT-2, pp. S8-S19, Sept. 1956.

——, “Certain results in coding theory for noisy channelsform.
Contr, vol. 1, pp. 6-25, 1957.

P. Elias, “Coding for noisy channels,” ilRE Conv. Re¢.1955, pp.
37-46.

C. E. Shannon, “Probability of error for optimal codes in a Gaussian
channel,"Bell Syst. Tech. Jvol. 38, pp. 611-656, 1959.

—, “Two-way communication channels,” ifProc. 4th Berkeley
Symp. Probability and Statistics, June 20-July 30, 1950Neyman,
Ed. Berkeley, CA: Univ. Cal. Press, 1961, vol. 1, pp. 611-644.

C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to
error probability for coding on discrete memoryless channelafgrm.
Contr, vol. 10, pp. 65-103, 1967.

21] ——, “Lower bounds to error probability for coding on discrete memo-

ryless channels Il,Inform. Contr, vol. 10, pp. 522-552, 1967.

R. M. Fano, Transmission of Information Cambridge, MA: MIT
Press/Wiley, 1961.

I. Csiszar and J. Kornelmformation Theory: Coding Theorems for Dis-
crete Memoryless Systemd_ondon, U.K.: Academic, 1981.

C. E. Shannon and W. Weav@e Mathematical Theory of Communi-
cation Urbana, IL: Univ. lllinois Press, 1949.

A. N. Kolmogorov, Foundations of the Theory of Probability New
York: Chelsea, 1950, 2nd. ed. 1956.

W. Feller, An Introduction to Probability Theory and its Applica-
tions New York: Wiley, 1950, vol. I.

C. E. Shannon, “The bandwagon: EditoridRE Trans. Inform. Theory
vol. IT-2, p. 3, Mar. 1956.

—, “Mathematical theory of the differential analyzed,"Math. Phys.
vol. 20, pp. 337-54, 1941.

——, “The theory and design of linear differential machines,” Report to
the Services 20, Div 7-311-M2, Bell Labs, Jan. 1942.

——, “Programming a computer for playing chesBfiilos. Mag, ser.

7, vol. 41, pp. 256-275, Mar. 1950.

, “A chess-playing machine Scientific Amer.vol. 182, pp. 48-51,
Feb. 1950.

——, “A universal Turing machine with two states,” Memo. 54-114-38,
Bell Labs., 1954.

E. F. Moore and C. E. Shannon, “Reliable circuits using crummy relays,”
Memo. 54-114-42, Bell Labs., 1954. (Republished in $hEranklin
Inst, Sept.—Oct. 1956).

A. Feinstein, “A new basic theorem of information theoRE Trans.
Inform. Theoryvol. PGIT-4, pp. 2-22, Sept. 1954b.

——, “Error bounds in noisy channels without memoriiRE Trans.
Inform. Theoryvol. IT-1, pp. 13-14, Sept. 1955.

B. McMillan, “The basic theorems of information theorhn. Math.
Statist, vol. 24, pp. 196-219, 1953.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


