(Go: >> BACK << -|- >> HOME <<)

Skip to main content
Log in

Black Holes in Bose–Einstein Condensates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that there exist both dynamically stable and unstable dilute-gas Bose–Einstein condensates that, in the hydrodynamic limit, exhibit a behavior completely analogous to that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models. We have also simulated the creation of a stable sonic black hole by solving the Gross–Pitaevskii equation numerically for a condensate subject to a trapping potential that is adiabatically deformed. A sonic black hole could in this way be created experimentally with state-of-the-art or planned technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Singapore)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198.

    Google Scholar 

  • Andrews, M. R., Townsend, C. G., Miesner, H.-J., Durfee, D. S., Kurn, D. M., and Ketterle W. (1997). Observation of interference between two Bose condensates, Science 275, 637.

    Google Scholar 

  • Bloch, I., Hänsch, T.W., and Esslinger, T. (1999). An Atom Laser with a cw Output Coupler, Physical Review Letters 82, 3008.

    Google Scholar 

  • Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G. V., and Lewenstein, M. (1999). Dark Solitons in Bose-Einstein Condensates, Physical Review Letters 83, 5198.

    Google Scholar 

  • Corley, S. (1998). Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach, Physical Review D 57, 6280.

    Google Scholar 

  • Corley, S. and Jacobson, T. (1999). Black hole lasers, Physical Review D 59, 4011.

    Google Scholar 

  • Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. (1999). Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics 71, 463.

    Google Scholar 

  • Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. (1995). Bose-Einstein Condensation in a Gas of Sodium Atoms, Physical Review Letters 75, 3969.

    Google Scholar 

  • Deng, L., Hagley, E.W., Wen, J., Trippenbach, M., Band, Y., Julienne, P. S., Simsarian J. E., Helmerson, K., Rolston, S. L., Phillips, W. D. (1999). Four-wave mixing with matter waves, Nature (London) 398, 218.

    Google Scholar 

  • Dum, R., Cirac, J. I., Lewenstein, M., and Zoller, P. (1998). Creation of Dark Solitons and Vortices in Bose-Einstein Condensates, Physical Review Letters 80, 2972.

    Google Scholar 

  • Fedichev, P. O. and Shlyapnikov, G. V. (1999). Dissipative dynamics of a vortex state in a trapped Bose-condensed gas, Physical Review A 60, R1779.

    Google Scholar 

  • Fulling, S. A. (1989). Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, Cambridge.

    Google Scholar 

  • Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2000). Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, Physical Review Letters 85, 4643

    Google Scholar 

  • Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (2001). Sonic black holes in dilute Bose-Einstein condensates, Physical Review A 63, 023611.

    Google Scholar 

  • Garay, L. J., Anglin, J. R., Cirac, J. I., and Zoller, P. (unpublished). Unpublished manuscript.

  • Hagley, E. W., Deng, L., Kozuma, M., Wen, J., Helmerson, K., Rolston, S. L., and Philips, W. D. (1999). A Well-Collimated Quasi-Continuous Atom Laser, Science 283, 1706.

    Google Scholar 

  • Hawking, S. W. (1974). Black holes explosions? Nature (London) 248, 30.

    Google Scholar 

  • Hawking, S.W. (1975). Particle creation by black hole, Communications in Mathematical Physics 43, 199.

    Google Scholar 

  • Jacobson, T. (1991). Black-hole evaporation and ultrashort distances, Physical Review D 44, 1731.

    Google Scholar 

  • Jacobson, T. (1999). Trans-Planckian redshifts and the substance of the space-time river, Progress of Theoretical Physics 136(Suppl.), 1.

    Google Scholar 

  • Jacobson, T. A. and Volovik, G. E. (1998). Event horizons and ergoregions in 3He, Physical Review D 58, 4021.

    Google Scholar 

  • Kang, G. (1996). Preprint hep-th/9603166. unpublished manuscript. See for a concise pedagogical illustration, and references therein.

  • Leonhardt, U. and Piwnicki, P. (1999). Optics of nonuniformly moving media, Physical Review A 60, 4301.

    Google Scholar 

  • Leonhardt, U. and Piwnicki, P. (2000). Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity, Physical Review Letters 84, 822.

    Google Scholar 

  • Liberati, S., Sonego, S., and Visser, M. (2000). Unexpectedly large surface gravities for acoustic horizons? Classical Quantum Gravity 17, 2903.

    Google Scholar 

  • Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E., and Cornell, E. A. (1999). Vortices in a Bose-Einstein Condensate, Physical Review Letters 83, 2498.

    Google Scholar 

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.

    Google Scholar 

  • Reznik, B. (1997). Preprint gr-qc/9703076. Unpublished manuscript.

  • Ruutu, V. M., Eltsov, V. B., Gill, A., Kibble, T.W., Krusius, M., Makhlin, Yu. G., Placais, B., Volovik, G. E., Wen, Xu. (1996). Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation, Nature (London) 382, 334.

    Google Scholar 

  • Schroer, B. and Swieca, J. A. (1970). Indefinite Metric and Stationary external Interactions of Quantized Fields, Physical Review D 2, 2938.

    Google Scholar 

  • Unruh, W. G. (1981). Experimental Black-Hole Evaporation? Physical Review Letters 46, 1351.

    Google Scholar 

  • Unruh, W. G. (1995). Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Physical Review D 51, 2827.

    Google Scholar 

  • Visser, M. (1998a). Hawking Radiation without Black Hole Entropy, Physical Review Letters 80, 3436.

    Google Scholar 

  • Visser, M. (1998b). Acoustic black holes: horizons, ergospheres, and Hawking radiation, Classical Quantum Gravity 15, 1767.

    Google Scholar 

  • Visser, M. (1993). Preprint gr-qc/9311028. Unpublished manuscript.

  • Volovik, G. E. (1999a). Simulation of Painleve-Gullstrand black hole in thin 3He A film, Pis'mav Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 69, 662.

    Google Scholar 

  • Volovik, G. E. (1999b). Simulation of Painleve-Gullstrand black hole in thin 3He A film, JETP Letters 69, 705.

    Google Scholar 

  • Williams, J. and Holland, M. (1999). Preparing topological states of a Bose-Einstein condensate, Nature (London) 401, 568.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garay, L.J. Black Holes in Bose–Einstein Condensates. International Journal of Theoretical Physics 41, 2073–2090 (2002). https://doi.org/10.1023/A:1021172708149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021172708149

Navigation