Tollin kaltaiset reseptorit

Wikipediasta
Siirry navigaatioon Siirry hakuun
Tulostettavaa versiota ei enää tueta ja siinä voi olla renderöintivirheitä. Päivitä selaimesi kirjanmerkit ja käytä selaimen tavallista tulostustoimintoa sen sijaan.

Tollin kaltaiset reseptorit[1] eli TLR:t tai Toll:in kaltaiset reseptorit[2] ovat ryhmä reseptoreita, joita on kaikissa selkärankaisten ja selkärangattomien luontaista immuniteettia ylläpitävissä soluissa, kuten makrofageissa ja neutrofiileissä.[3] TLR:t ovat osa luontaista immuniteettia, joka suojaa eliöitä automaattisesti eri taudinaiheuttajilta eli patogeeneiltä. TLR:t eivät siis ole osa hankinnaista immuniteettia, jossa immuniteetin tulee ensin kehittyä jotakin patogeeniä kohtaan ennen kuin eliö voi tehokkaasti puolustautua sitä vastaan. TLR:t kuuluvat laajempaan malleja tunnistavien reseptorien (PRR:ien) ryhmään. Nämä "mallit" ovat tiettyjä kohtia aineissa, jotka patogeenit ovat tuottaneet. Näitä aineita sanotaan PAMP-molekyyleiksi tai TLR:ien ligandeiksi. Nämä aineet kuuluvat usein patogeenien perusrakenteeseen, jotta patogeenit eivät voi helposti piilottaa näitä rakenteita TLR:iltä tai muilta PPR:iltä. Jotkin TLR:t sitovat luontaisesti myös eliön solujen vaurioitumisessa vapautuvia aineita, kuten lämpöshokkiproteiineja.[4] Selkärankaisissa TLR:t ovat lähes yksinomaan vain osa immuunipuolustusta, mutta monissa selkärangattomissa ne osallistuvat myös yksilönkehitykseen.[3]

Ihmisissä on 10 eri tyyppistä TLR:ää, jotka on numeroitu yhdestä 10:neen (TLR1–10).[5] Monissa muissa selkärankaisissa on osin samat TLR:t kuin ihmisissä, mutta joissakin lajeissa niitä on vähemmän ja joissakin enemmän. Selkärankaisista on tunnistettu yhteensä ainakin 28 TRL:ää vuoteen 2018 mennessä. Selkärangattomissa niitä taas on lajista riippuen jopa satoja.[3]

On myös kehitetty lääkkeitä, jotka sitoutuvat TLR:iin agonisteina tai antagonisteina. Esimerkiksi imikimodi on TLR7-agonisti, joka toimii siten muun muassa syylälääkkeenä.[6]

Rakenne ja luokittelu

Ihmisen TLR4-homodimeerin osittainen kolmiulotteinen rakenne. Harmaa: solukalvo. Siniset viivat: α-kierteiden likimääräinen esitys. Yläosa: LRR-domeeni (PDB: 3FXI). Alaosa: TIR-domeeni (PDB: 2J67).

TLR:t ovat kaksoislipidikalvon läpäiseviä tyypin I proteiineja (ne läpäisevät kalvon yhdellä α-kierteellä).[3] Niissä on tämän lisäksi 2 muuta proteiinidomeenia, jotka ovat yleensä leusiinirikkaan toistojakson eli LRR-proteiinimotiivin (engl. leucine-rich repeat) sisältävä domeeni ja Toll-interleukiini 1- eli Toll/IL-1-reseptoridomeeni (TIR-domeeni).[5]

Aminohapposekvenssien samankaltaisuuden perusteella selkärankaisten vuoteen 2018 mennessä tunnistetut 28 TLR:ää jaetaan kuuteen alaperheeseen.[7][3] TLR1-alaperheeseen kuuluvat ainakin TLR1/2/6/10/14/15/16/18/24/25/27/28. TLR3-perheeseen kuuluu vain TLR3, TLR4-perheeseen vain TLR4 ja TLR5-perheeseen vain TLR5. TLR7-perheeseen kuuluvat TLR7/8/9. TLR11-perheeseen kuuluvat TLR11/12/13/19/20/21/22/23/26.[3]

Signaalin välitys

TIR-domeeni saa aikaan reseptorisignaalin LRR-domeenin sitoessa TLR:n aktivoivan ligandin.[3] Tällöin TLR muodostaa parin toisen samanlaisen tai erilaisen TLR:n kanssa tuottaen siis vastaavasti homo- tai heterodimeerin.[5] Dimeerin TIR-domeeneihin sitoutuu sitten lähes kaikkien TLR:ien kohdalla myeloidinen erilaistumistekijä 88 eli MyD88. Poikkeuksena on kuitenkin muun muassa nisäkkäiden TLR3 tai TLR4, joihin kiinnittyy TRIF. Nisäkkäiden TLR4 tosin vaatii tähän adaptoriproteiinin. MyD88- ja TRIF-välitteiset reitit johtavat eri proteiinien välityksellä lopulta geeniekspression muutoksiin.[5][3] Mikäli TLR:t liittyvät immuunipuolustukseen, tämä voi johtaa esimerkiksi interleukiini 1:n, kemokiinien, muiden sytokiinien tai tuumorinekroositekijä alfan (TNF-α) vapautumiseen solusta. Nämä edistävät paikallista tulehdusta muun muassa kerryttämällä tulehduskohtaan kudosnestettä ja valkosoluja.[4]

Ihmisten TL-reseptorit

Ihmisistä on tunnistettu kymmenen TLR:ää ainakin vuoteen 2020 mennessä. Nämä ovat alla olevassa taulukossa.[5] TLR10 tosin on viimeisin ihmisistä löydetty TLR ja se löydettiin jo vuonna 2001.[8][5] TLR:t tunnistavat tiettyjen taudinaiheuttajien eli patogeenien läsnäolon ihmisessä sitoutumalla niiden rakenteeseen kuuluviin tai muuten niiden läsnäoloon liittyviin aineisiin, joita sanotaan PAMP-molekyyleiksi (engl. pathogen-associated molecular pattern molecules eli "patogeeniassosioituneet molekyylirakenteet"). Nämä aineet ovat TLR:ien ligandeja.[4] Osa TLR:istä on solukalvoilla, joissa ne tunnistavat ulkoisia patogeenejä. Osa taas on solujen sisällä fagolysosomeissa eli endolysosomeissa (nämä kalvorakkulat kuuluvat endosomeihin). Solujen sisäiset TRL:t tunnistavat lähinnä patogeenien DNA:ta tai RNA:ta.[6] Ihmisten monosyyteissä ja B-imusoluissa on lähes kaikkia eri tyyppisiä TLR:iä. Niitä on rajatummin myös muun muassa syöttösoluissa, epiteelin soluissa (esimerkiksi suoliston sisäpinnan soluissa) ja joissakin dendriittisoluissa.[4] Ihmisissä ilmenee yhden nukleotidin polymorfiaa eli perinnöllistä vaihtelua TLR:ien välillä, joka liittyy TLR:stä riippuen lähinnä alttiuteen sairastua joihinkin infektioihin tai tulehduksellisiin sairauksiin.[6]

Ihmisten TL-reseptorit
Nimi Tunnistetut patogeenit PAMP-molekyylit tai muut luontaiset ligandit Sijainti[6] Synonyymit[9] Geenin kohta kromosomissa[9]
TLR1 Bakteerit[4] Triasyylilipopeptidit[6] Solukalvo (solun ulkopuolella) rsc786, KIAA0012, CD281 4p14
TLR2 Bakteerit, hiivat, kehon vaurioituneet solut[4] Peptidoglykaani, lipoteikkohappo, lipoarabinomannaani, lipoproteiinit tai -peptidit, fenoliliukoiset moduliinit (engl. phenol-soluble modulins), glykolipidit, poriinit, tsymosaani, HSP70, lipopolysakkaridit,[6] glykosyylifosfatidyyli-inositoli- eli GPI-ankkurit[4] Solukalvo (solun ulkopuolella) TIL4, CD282 4q31.3
TLR3 Virukset[4] Kaksijuosteinen RNA (dsRNA)[4] Fagolysosomi (solun sisäpuolella) CD283 4q35.1
TLR4 Bakteerit, virukset, kehon vaurioituneet solut[4] Jotkin virusproteiinit (muun muassa fuusioproteiinit ja viruskuoriproteiinit), lipopolysakkaridit, lämpösokkiproteiinit (HSP22, HSP60, HSP70 ja HSP96), HMGB1-proteiini, fibronektiinityypin III domeeni, hyaluronihapon oligosakkaridit, heparaanisulfaatti, fibrinogeeni, jotkin tyydyttyneet rasvahapot, alfa-2-hs-glykoproteiini (fetuiini A)[6] Solukalvo (solun ulkopuolella) hToll, CD284, TLR-4, ARMD10 9q33.1
TLR5 Bakteerit[4] Flagelliini[6] Solukalvo (solun ulkopuolella) TIL3, FLJ10052, MGC126430, MGC126431, SLEB1 1q41
TLR6 Bakteerit, parasiitit, hiivat[4] Diasyylilipopeptidit, tsymosaani[6] Solukalvo (solun ulkopuolella) CD286 4p14
TLR7 Virukset[4] Yksijuosteinen RNA (ssRNA)[6] Fagolysosomi (solun sisäpuolella) Xp22.2
TLR8 Virukset[4] Yksijuosteinen RNA (ssRNA)[6] Fagolysosomi (solun sisäpuolella) CD288 Xp22.2
TLR9 Virukset, bakteerit[4] CpG-saarekkeita sisältävä DNA[4] Fagolysosomi (solun sisäpuolella) CD289 3p21.2
TLR10 Tuntematon Tuntematon[5] Fagolysosomi (solun sisäpuolella) CD290 4p14

TL-reseptorit muissa eliöissä

Selkärankaiset

Vuoteen 2018 mennessä selkärankaisista on löydetty ainakin 28 eri TLR-tyyppiä. Nisäkkäistä niitä on löydetty 13. Nämä on numeroitu yhdestä 13:een (TLR1–13). Esimerkiksi hiirissä on nämä kaikki[3] paitsi TLR10, josta niillä on vain toimimaton valegeeni.[5] Eri linnuista TRL:iä on tunnistettu 10 (TLR1–7, TLR15, TLR16 ja TLR21), matelijoista 7 (TLR2–7 ja TLR13), sammakkoeläimistä 14 (TLR1–9, TLR12–13, TLR14 ja TLR21–22), varsinaisista luukaloista 20 (TLR1–5, TLR7–9, TLR13–14, TLR18–23 ja TLR25–28), rustokaloista 6 (TLR2–3, TLR6, TLR9, TLR14 ja TLR22) ja ympyräsuisista 6 (TLR3, TLR5, TLR7–8, TLR14 ja TLR24).[3]

Kaikissa selkärankaisissa TLR:t osallistuvat tiettävästi pelkästään luontaisen immuniteetin ylläpitoon. Poikkeuksena ovat sammakkoeläimet, joissa TRL:t ilmeisesti osallistuvat yksilönkehitykseen.[3]

Selkärangattomat

Selkärangattomissa eliöissä TLR:ien määrä vaihtelee yhdestä satoihin. Esimerkiksi eleganssimadossa TLR:iä on vain yksi. Strongylocentrotus purpuratus -merisiilissä TLR:iä koodaavia geenejä taas on löydetty 222.[3] Toisin kuin selkärankaisissa, selkärangattomissa ei ole suoranaista hankinnaista immuniteettia, vaikka osa niistä voikin muun muassa muokata luontaisen immuniteetin vastetta aikaisimpiin patogeenialtistuksiin perustuen tai siirtää epigeneettisesti ympäristön muovaamaa immuunivastetta sukupolvelta toiselle.[10] Siksi TLR-pohjaiset luontaisen immuniteetin järjestelmät ovat kehittyneempiä useimmissa selkärangattomissa kuin selkärankaisissa. Monissa selkärangattomissa TLR:t osallistuvat myös yksilönkehitykseen.[3]

Historia

Charles A. Janeway esitti ensimmäisenä teorian TLR-tyyppisten reseptorien olemassaolosta vuonna 1989.[11] Bruno Lemaitre, Jules Hoffmann ja kollegat tunnistivat vuonna 1996 ensimmäisen TLR:n. He löysivät sen banaanikärpäsestä ja nimesivät sen "Toll-reseptoriksi", josta myös nimi TLR eli "Tollin kaltaiset reseptorit" tulee. He huomasivat Toll-reseptorin olevan osa kärpästen luontaista immuniteettia, sillä sen toimintaa heikentävät mutaatiot tekivät kärpäsistä alttiita tartunnoille.[12][11] "Toll" taas vakiintui vuonna 1985 nimeksi tuolloin vielä ominaisuuksiltaan osin tuntemattomalle reseptoria koodaavalle mutanttigeenille, kun Christiane Nüsslein-Volhard esitti saksaksi hämmästyneen lausahduksen "Das war ja toll!" ("Olipas outoa!") geeniä kantavia mutanttikärpäsiä tutkiessaan.[13][14]

Toll-reseptorin löytymisen seurauksena Ruslan Medzhitov, Paula Preston-Hurlburt ja Charles A. Janeway löysivät ensimmäisen ihmisen TLR:n vuonna 1997, jonka he nimesivät "hToll-reseptoriksi". Nykyään hToll tunnetaan nimellä TLR4.[15][11] Sittemmin ihmisten ja muiden eliöiden TLR:iä on löydetty lisää. TLR10:n on viimeisin ihmisestä löydetty TLR. Sen löysivät Chuang ja Ulevitch vuonna 2001.[8][5]

Lääketieteen Nobel-palkinto annettiin vuonna 2011 Jules Hoffmannille ja Bruce Beutlerille heidän työstään TLR:ien parissa. Beutler sai palkinnon, sillä vuonna 1998 hän ja kollegat kloonasivat eräästä tunnetusta bakteeritartunnoille alttiista koehiirikannasta tartuntaherkkyyden aiheuttavan TLR4:n virheellisen geenin.[11]

Lähteet

  1. Septinen sokki ja Tollin kaltaiset reseptorit. Duodecim, 2004, 120. vsk, nro 17, s. 2051. ISSN 0012-7183. Artikkelin verkkoversio.
  2. Finto: MeSH: toll:in kaltaiset reseptorit finto.fi. Viitattu 12.3.2021.
  3. a b c d e f g h i j k l m L. Nie et al.: Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Frontiers in Immunology, 2018, 9. vsk, nro 1523. PubMed:30034391. doi:10.3389/fimmu.2018.01523. ISSN 1664-3224. Artikkelin verkkoversio. (englanniksi)
  4. a b c d e f g h i j k l m n o p H. P. Rang et al: Rang and Dale's pharmacology, s. 78–89. 8. p.. Elsevier, 2016. ISBN 9780702053627. (englanniksi)
  5. a b c d e f g h i F. Fore et al: TLR10 and its unique anti-inflammatory properties and potential use as a target in therapeutics. Immune Network, 2020, 20. vsk, nro 3. PubMed:32655969. doi:10.4110/in.2020.20.e21. ISSN 1598-2629. Artikkelin verkkoversio. (englanniksi)
  6. a b c d e f g h i j k K. Vijay: Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. International Immunopharmacology, 2018, 59. vsk, s. 391–412. PubMed:29730580. doi:10.1016/j.intimp.2018.03.002. ISSN 1567-5769. Artikkelin verkkoversio. (englanniksi)
  7. I Botos, DM Segal, DR Davies: The structural biology of Toll-like receptors. Structure, 2011, 19. vsk, nro 4, s. 447–459. PubMed:21481769. doi:10.1016/j.str.2011.02.004. ISSN 0969-2126. Artikkelin verkkoversio.
  8. a b T. Chuang, R. J. Ulevitch: Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochimica Et Biophysica Acta, 2001, 1518. vsk, nro 1-2, s. 157–161. PubMed:11267672. doi:10.1016/s0167-4781(00)00289-x. ISSN 0006-3002. Artikkelin verkkoversio. (englanniksi)
  9. a b Toll like receptors (TLR) genenames.org. Viitattu 10.3.2021. (englanniksi)
  10. D. Melillo et al.: Innate immune memory in invertebrate metazoans: a critical appraisal. Frontiers in Immunology, 2018, 9. vsk, nro 1915. PubMed:30186286. doi:10.3389/fimmu.2018.01915. ISSN 1664-3224. Artikkelin verkkoversio. (englanniksi)
  11. a b c d S. N. Vogel: How discovery of Toll-mediated innate immunity in Drosophila impacted our understanding of TLR signaling (and vice versa). The Journal of Immunology, 2012, 188. vsk, nro 11, s. 5207–5209. PubMed:22611247. doi:10.4049/jimmunol.1201050. ISSN 0022-1767. Artikkelin verkkoversio. (englanniksi)
  12. B. Lemaitre et al.: The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86. vsk, nro 6, s. 973–983. PubMed:8808632. doi:10.1016/s0092-8674(00)80172-5. ISSN 0092-8674. Artikkelin verkkoversio. (englanniksi)
  13. K. V. Anderson, G. Jürgens, C. Nüsslein-Volhard: Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell, 1985, 42. vsk, nro 3, s. 779–789. PubMed:3931918. doi:10.1016/0092-8674(85)90274-0. ISSN 0092-8674. Artikkelin verkkoversio. (englanniksi)
  14. G. K. Hansson, K. Edfeldt: Toll to be paid at the gateway to the vessel wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25. vsk, nro 6, s. 1085–1087. PubMed:15923538. doi:10.1161/01.ATV.0000168894.43759.47. ISSN 1524-4636. Artikkelin verkkoversio. (englanniksi)
  15. R. Medzhitov, P. Preston-Hurlburt, C. A. Janeway: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388. vsk, nro 6640, s. 394–397. PubMed:9237759. doi:10.1038/41131. ISSN 0028-0836. Artikkelin verkkoversio. (englanniksi)