(Go: >> BACK << -|- >> HOME <<)

Omeprazole: Difference between revisions

Content deleted Content added
→‎Pharmacokinetics: Clarified the timings of omeprazole dosage
m →‎Interactions: remove excess italics
Line 152:
This interaction is possible because omeprazole is an [[enzyme inhibitor|inhibitor]] of the enzymes [[CYP2C19]] and [[CYP3A4]].<ref>{{cite journal | vauthors = Shirasaka Y, Sager JE, Lutz JD, Davis C, Isoherranen N | title = Inhibition of CYP2C19 and CYP3A4 by omeprazole metabolites and their contribution to drug-drug interactions | journal = Drug Metabolism and Disposition | volume = 41 | issue = 7 | pages = 1414–1424 | date = July 2013 | pmid = 23620487 | pmc = 3684819 | doi = 10.1124/dmd.113.051722 }}</ref> [[Clopidogrel]] is an inactive [[prodrug]] that partially depends on CYP2C19 for conversion to its active form. Inhibition of CYP2C19 may block the activation of clopidogrel, which could reduce its effects.<ref>{{cite journal | vauthors = Lau WC, Gurbel PA | title = The drug-drug interaction between proton pump inhibitors and clopidogrel | journal = CMAJ | volume = 180 | issue = 7 | pages = 699–700 | date = March 2009 | pmid = 19332744 | pmc = 2659824 | doi = 10.1503/cmaj.090251 }}</ref><ref>{{cite journal | vauthors = Norgard NB, Mathews KD, Wall GC | title = Drug-drug interaction between clopidogrel and the proton pump inhibitors | journal = The Annals of Pharmacotherapy | volume = 43 | issue = 7 | pages = 1266–1274 | date = July 2009 | pmid = 19470853 | doi = 10.1345/aph.1M051 | s2cid = 13227312 }}</ref>
 
Almost all [[benzodiazepines]] are metabolised by the CYP3A4 and [[CYP2D6]] pathways, and inhibition of these enzymes results in a higher [[Area under the curve (pharmacokinetics)|area under the curve]] (''i.e.'', the total effect over time of a given dose). Other examples of drugs dependent on CYP3A4 for their metabolism are [[escitalopram]],<ref>{{EMedicine|article|1879354|Selective Serotonin Reuptake Inhibitors and CYP2D6}}</ref> [[warfarin]],<ref name="pmid12724615">{{cite journal | vauthors = Daly AK, King BP | title = Pharmacogenetics of oral anticoagulants | journal = Pharmacogenetics | volume = 13 | issue = 5 | pages = 247–252 | date = May 2003 | pmid = 12724615 | doi = 10.1097/00008571-200305000-00002 }}</ref> [[oxycodone]], [[tramadol]], and [[oxymorphone]]. The concentrations of these drugs may increase if they are used concomitantly with omeprazole.<ref name=Stedman>{{cite journal | vauthors = Stedman CA, Barclay ML | title = Review article: comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors | journal = Alimentary Pharmacology & Therapeutics | volume = 14 | issue = 8 | pages = 963–978 | date = August 2000 | pmid = 10930890 | doi = 10.1046/j.1365-2036.2000.00788.x | s2cid = 45337685 }}</ref>
 
Omeprazole is also a competitive inhibitor of [[p-glycoprotein]], as are other PPIs.<ref>{{cite journal | vauthors = Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF | title = Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein | journal = Naunyn-Schmiedeberg's Archives of Pharmacology | volume = 364 | issue = 6 | pages = 551–557 | date = December 2001 | pmid = 11770010 | doi = 10.1007/s00210-001-0489-7 | s2cid = 19990184 }}</ref>