(Go: >> BACK << -|- >> HOME <<)

Jump to content

Depsipeptide

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A depsipeptide is a peptide in which one or more of its amide, -C(O)NHR-, groups are replaced by the corresponding ester, -C(O)OR-.[1] Many depsipeptides have both peptide and ester linkages.[2] Elimination of the N–H group in a peptide structure results in a decrease of H-bonding capability, which is responsible for secondary structure and folding patterns of peptides, thus inducing structural deformation of the helix and β-sheet structures.[2][3] Because of decreased resonance delocalization in esters relative to amides, depsipeptides have lower rotational barriers for cis-trans isomerization and therefore they have more flexible structures than their native analogs.[2][3] They are mainly found in marine and microbial natural products.[4]

Example of a depsipeptide with 3 amide groups (highlighted blue) and one ester group (highlighted green). R1 and R3 are organic groups (e. g. methyl) or a hydrogen atom found in α-hydroxycarboxylic acids. R2, R4 and R5 are organic groups or a hydrogen atom found in common amino acids.

Depsipeptide natural products

Enterochelin is a depsipeptide that is an iron-transporter.[5]

Several depsipeptides have been found to exhibit anti-cancer properties.[6]

A depsipeptide enzyme inhibitor includes romidepsin, a member of the bicyclic peptide class, a known histone deacetylase inhibitors (HDACi). It was first isolated as a fermentation product from Chromobacterium violaceum by the Fujisawa Pharmaceutical Company.[7]

Etamycin was shown in preliminary data in 2010 to have potent activity against MRSA in a mouse model.[8] Several depsipeptides from Streptomyces exhibit antimicrobial activity.[9][10] These form a new, potential class of antibiotics known as acyldepsipeptides (ADEPs). ADEPs target and activate the casein lytic protease (ClpP) to initiate uncontrolled peptide and unfolded protein degradation, killing many Gram-positive bacteria.[11][12][13]

Depsipeptides can be formed through a Passerini reaction.[14]

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "depsipeptides". doi:10.1351/goldbook.D01604
  2. ^ a b c Avan, Ilker; Tala, Srinivasa R.; Steel, Peter J.; Katritzky, Alan R. (17 June 2011). "Benzotriazole-Mediated Syntheses of Depsipeptides and Oligoesters". The Journal of Organic Chemistry. 76 (12): 4884–4893. doi:10.1021/jo200174j. PMID 21452874.
  3. ^ a b Avan, Ilker; Hall, C. Dennis; Katritzky, Alan R. (2014). "Peptidomimetics via modifications of amino acids and peptide bonds". Chemical Society Reviews. 43 (10): 3575–3594. doi:10.1039/C3CS60384A. PMID 24626261.
  4. ^ Yasumasa Hamada; Takayuki Shioiri (2005). "Recent Progress of the Synthetic Studies of Biologically Active Marine Cyclic Peptides and Depsipeptides". Chem. Rev. 105 (12): 4441–4482. doi:10.1021/cr0406312. PMID 16351050.
  5. ^ Walsh; Christopher T.; Jun Liu; Frank Rusnak; Masahiro Sakaitani (1990). "Molecular Studies on Enzymes in Chorismate Metabolism and the Enterobactin Biosynthetic Pathway". Chemical Reviews. 90 (7): 1105–1129. doi:10.1021/cr00105a003.
  6. ^ Kitagaki, J.; Shi, G.; Miyauchi, S.; Murakami, S.; Yang, Y. (2015). "Cyclic depsipeptides as potential cancer therapeutics". Anticancer Drugs. 26 (3): 259–71. doi:10.1097/CAD.0000000000000183. PMID 25419631. S2CID 22071968.
  7. ^ Yurek-George, Alexander; Cecil, Alexander Richard Liam; Mo, Alex Hon Kit; Wen, Shijun; Rogers, Helen; Habens, Fay; Maeda, Satoko; Yoshida, Minoru; et al. (2007). "The First Biologically Active Synthetic Analogues of FK228, the Depsipeptide Histone Deacetylase Inhibitor". Journal of Medicinal Chemistry. 50 (23): 5720–5726. doi:10.1021/jm0703800. PMID 17958342.
  8. ^ Haste, Nina M; Perera, Varahenage R; Maloney, Katherine N; Tran, Dan N; Jensen, Paul; Fenical, William; Nizet, Victor; Hensler, Mary E (2010). "Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus". Journal of Antibiotics. 63 (5): 219–24. doi:10.1038/ja.2010.22. PMC 2889693. PMID 20339399.
  9. ^ K. H. Michel, R. E. Kastner (Eli Lilly and Company), US 4492650, 1985 [Chem. Abstr. 1985, 102, 130459]
  10. ^ Osada, Hiroyuki; Yano, Tatsuya; Koshino, Hiroyuki; Isono, Kiyoshi (1991). "Enopeptin A, a novel depsipeptide antibiotic with anti-bacteriophage activity". The Journal of Antibiotics. 44 (12): 1463–1466. doi:10.7164/antibiotics.44.1463. PMID 1778798.
  11. ^ Li; Him Shun, Dominic; Guarné, Alba; Maurizi, Michael R.; Cheng, Yi-Qiang; Wright, Gerard D.; Ghirlando, Rodolfo; Joseph, Ebenezer; Gloyd, Melanie; Seon Chung, Yu; Ortega, Joaquin (2010). "Acyldepsipeptide Antibiotics Induce The Formation Of A Structured Axial Channel In ClpP: A Model For The ClpX/ClpA-Bound State Of ClpP". Chemistry & Biology. 17 (9): 959–969. doi:10.1016/j.chembiol.2010.07.008. PMC 2955292. PMID 20851345.
  12. ^ Hinzen, Berthold; Labischinski, Harald; Brötz-Oesterhelt, Heike; Endermann, Rainer; Benet-Buchholz, Jordi; Hellwig, Veronica; Häbich, Dieter; Schumacher, Andreas; Lampe, Thomas; Paulsen, Holger; Raddatz, Siegfried (2006). "Medicinal Chemistry Optimization of Acyldepsipeptides of the Enopeptin Class Antibiotics". ChemMedChem. 1 (7): 689–693. doi:10.1002/cmdc.200600055. PMID 16902918. S2CID 36525372.
  13. ^ Carney, Daniel W.; Schmitz, Karl R.; Truong, Jonathan V.; Sauer, Robert T.; Sello, Jason K. (2014). "Restriction of the Conformational Dynamics of the Cyclic Acyldepsipeptide Antibiotics Improves Their Antibacterial Activity". Journal of the American Chemical Society. 136 (5): 1922–1929. doi:10.1021/ja410385c. PMC 4004210. PMID 24422534.
  14. ^ Li, Jie Jack (2021), "Passerini Reaction", Name Reactions, Cham: Springer International Publishing, pp. 424–426, doi:10.1007/978-3-030-50865-4_115, ISBN 978-3-030-50864-7, retrieved 2022-10-26

Further reading

  • papuamide Ford, PW; Gustafson, KR; McKee, TC; Shigematsu, N; Maurizi, LK; Pannell, LK; Williams, DE; de Silva, ED; Lassota, P; Allen, TM; Van Soest, R; Andersen, RJ; Boyd, MR (1999). "Papuamides A-D, HIV-Inhibitory and Cytotoxic Depsipeptides from the Sponges Theonella mirabilis and Theonella swinhoei Collected in Papua New Guinea". J. Am. Chem. Soc. 121: 5899–5909. doi:10.1021/ja990582o.
  • neamphamide A Oku, N; Gustafson, KR; Cartner, LK; Wilson, JA; Shigematsu, N; Hess, S; Pannell, LK; Boyd, MR; McMahon, JB (2004). "Neamphamide A. A new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi". J. Nat. Prod. 67 (8): 1407–11. doi:10.1021/np040003f. PMID 15332865.
  • callipeltin A Zampella, A; D'Auria, MV; Paloma, LG; Casapullo, A; Minale, L; Debitus, C; Henin, Y (1996). "Callipeltin A, an Anti-HIV Cyclic Depsipeptide from the New Caledonian Lithistida Sponge Callipelta sp.". J. Am. Chem. Soc. 118 (26): 6202–9. doi:10.1021/ja954287p.
  • mirabamides A-D Plaza, A; Gustchina, E; Baker, HL; Kelly, M; Bewley, CA (2007). "Mirabamides A-D. Depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion". J. Nat. Prod. 70 (11): 1753–60. doi:10.1021/np070306k. PMID 17963357.; Andjelic, CD; Planelles, V; Barrows, LR (2008). "Characterizing the Anti-HIV Activity of Papuamide A." Mar Drugs. 6 (4): 528–49. doi:10.3390/md20080027. PMC 2630844. PMID 19172193.