Student Solutions

Manual for Stewart's

$$
\begin{gathered}
\text { Single Variable } \\
\text { Calculus: Early } \\
\text { Transcendentals, } \\
\text { 8ED. } \\
\text { (James Stewart) } \\
\text { |Calculus| } \\
2021
\end{gathered}
$$

1. Find the domain of the function.

$$
f(x)=\frac{5}{4 x-1}
$$

2. Determine whether f is even, odd, or neither.

$$
f(x)=\frac{8 x^{2}}{x^{4}+1}
$$

3. The graphs of $f(x)$ and $g(x)$ are given.
a) For what values of x is $f(x)=g(x)$?
b) Find the values of $f(-2)$ and $g(4)$.

4. It makes sense that the larger the area of a region, the larger the number of species that inhabit the region. Many ecologists have modeled the species-area relation with a power function and, in particular, the number of species S of bats living in caves in central Mexico has been related to the surface area A measured in m^{2} of the caves by the equation
$S=0.7 A^{03}$
(a) The cave called mission impossible near puebla, mexico, has suface area of $A=90 \mathrm{~m}^{2}$. How many species of bats would expect to find in that cave?
(b) If you discover that 5 species of bats live in cave estimate the area of the cave.
5. Express the function in the form of $f \circ g$.

$$
v(t)=\sec \left(t^{4}\right) \tan \left(t^{4}\right)
$$

6. The position of a car is given by the values in the following table.

t (seconds)	0	1	2	3	4	5
s (feet)	0	16	35	71	112	179

Estimate the instantaneous velocity when $t=2$ by averaging the velocities for the periods $[1,2]$ and $[2,3]$.
7. Consider the following function.
$f(x)=\left\{\begin{array}{cc}3-x & x<-1 \\ x & -1 \leq x<3 \\ (x-3)^{2} & x \geq 3\end{array}\right.$
Determine the values of a for which $\lim f(x)$ exists.
8. Find the limit.
$\lim _{x \rightarrow 0^{+}} \tan ^{-1}\left(\frac{2}{x}\right)$
9. Evaluate the limit.

$$
\lim _{x \rightarrow 0} \frac{(6+x)^{-1}-6^{-1}}{x}
$$

10. Find the limit.
$\lim _{x \rightarrow \frac{10}{x}} \tan ^{-1}\left(\frac{5}{x}\right)$
11. Evaluate the limit.
$\lim _{x \rightarrow 3}\left(\frac{x^{3}-5}{x^{2}-6}\right)$
12. Evaluate the limit.
$\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x-9}$
13. Evaluate the limit.
$\lim _{x \rightarrow 0} \frac{3-\sqrt{3-x^{2}}}{x}$
14. Find a number δ such that if $|x-2|<\delta$, then $|4 x-8|<\varepsilon$, where $\varepsilon=0.1$.
15. Find the point at which the given function is discontinuous.
$f(x)= \begin{cases}\frac{1}{x-7}, & x \neq 7 \\ 7, & x=7\end{cases}$
16. Write an equation that expresses the fact that a function f is continuous at the number 4 .
17. Find a function g that agrees with f for $x \neq 25$ and is continuous on 9 .
$f(x)=\frac{5-\sqrt{x}}{25-x}$
18. Let $f(x)=x^{2}-18 x+75$ and $g(x)=\sqrt{x+7}$. Find $(f \circ g)(74)(g \circ g)(74)$.
19. Find the limit $\lim _{x \rightarrow 0^{+}} \frac{9+\sqrt{x}}{\sqrt{x+16}}$.
20. Find the numbers, if any, where the function $f(x)=\frac{x-3}{x^{2}-9}$ is discontinuous.

Answer Key

1. $\left\{x \left\lvert\, x \neq \frac{1}{4}\right.\right\}$
2. even
3. a) $-2,10$
b) $f(-2)=6, g(4)=2$
4. a) 3 species
b) $702 \mathrm{~m}^{2}$
5. $f(t)=\sec (t) \tan (t)$

$$
g(t)=i^{4}
$$

6. $27.5 \mathrm{ft} / \mathrm{s}$
7. $(-\infty,-1) \cup(-1,3) \cup(3, \infty)$
8. $\frac{\pi}{2}$
9. $-\frac{1}{36}$
10. 0
11. $\frac{22}{3}$
12. $-1 / 6$
13. α
14. $\delta=0.025$
15. 7
16. $\lim _{x \rightarrow 4} f(x)=f(4)$
17. $g(x)=\frac{1}{5+\sqrt{x}}$
18. -6
19. $\frac{9}{4}$
20. ± 3
21. Find the domain of the function.

$$
f(x)=\sqrt{49-x^{2}}
$$

2. A spherical balloon with radius r inches has volume

$$
\frac{4}{3} \pi r^{3}
$$

Find a function that represents the amount of air required to inflate the balloon from a radius of r inches to a radius of $r+1$ inches.
3. It makes sense that the larger the area of a region, the larger the number of species that inhabit the region. Many ecologists have modeled the species-area relation with a power function and, in particular, the number of species S of bats living in caves in central Mexico has been related to the surface area A measured in m^{2} of the caves by the equation
$S=0.7 A^{03}$
(a) The cave called mission impossible near puebla, mexico, has suface area of $A=90 \mathrm{~m}^{2}$.

How many species of bats would expect to find in that cave?
(b) If you discover that 5 species of bats live in cave estimate the area of the cave.
4. A spherical balloon with radius r inches has volume

$$
4 \frac{\pi r^{3}}{3}
$$

Find a function that represents the amount of air required to inflate the balloon from a radius of r inches to a radius of $r+3$ inches.
5. A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of $45 \mathrm{~cm} / \mathrm{s}$. Express the radius r of this circle as a function of the time t (in seconds) and find $A \circ r$, if A is the area of this circle as a function of the radius.
6. The position of a car is given by the values in the following table.

i (seconds)	0	1	2	3	4	5
s (feet)	0	16	35	71	112	179

Estimate the instantaneous velocity when $t=2$ by averaging the velocities for the periods $[1,2]$ and $[2,3]$.

