(Go: >> BACK << -|- >> HOME <<)

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preorganized secondary structure as an important determinant of fast protein folding

Abstract

The folding and unfolding kinetics of the B-domain of staphylococcal protein A, a small three-helix bundle protein, were probed by NMR. The lineshape of a single histidine resonance was fit as a function of denaturant to give folding and unfolding rate constants. The B-domain folds extremely rapidly in a two-state manner, with a folding rate constant of 120,000 sāˆ’1, making it one of the fastest-folding proteins known. Diffusion-collision theory predicts folding and unfolding rate constants that are in good agreement with the experimental values. The apparent rate constant as a function of denaturant ('chevron plot') is predicted within an order of magnitude. Our results are consistent with a model whereby fast-folding proteins utilize a diffusion-collision mechanism, with the preorganization of one or more elements of secondary structure in the unfolded protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and stability of BdpA.
Figure 2: Aromatic region of one-dimensional proton NMR spectra of BdpA.
Figure 3: Broadening of a single NMR peak caused by folding and unfolding.
Figure 4: Kinetic folding (squares) and unfolding (triangles) rate constants as a function of GuHCl.
Figure 5: T2 of His 18 Hɛ peak as a function of Ļ„ delay time.
Figure 6: Fraction native protein as a function of GuHCl from three different probes: CD curve (open squares), NMR chemical shift of Tyr 14 Hɛ (closed triangles) lineshape fitting and T2 analysis of His 18 Hɛ (closed circles).
Figure 7: Comparison of chevron plots from experimental data (solid line) and diffusion-collision calculations (open circles and short-dashed line).

Similar content being viewed by others

References

  1. Baldwin, R.L. Protein folding from 1961ā€“1982. Nature Struct. Biol. 6, 814ā€“ 817 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Jackson, S.E. How do small, single-domain proteins fold? Folding Des. 3, R81ā€“&gt; R91 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Dobson, C.M. & Karplus, M. The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92ā€“ 101 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Alm, E. & Baker, D. Matching theory and experiment in protein folding. Curr. Opin. Struct. Biol. 9, 189ā€“ 196 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Daggett, V. Long timescale simulations. Curr. Opin. Struct. Biol. 10, 160ā€“ 164 (2000).

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Kolinski, A. & Skolnick, J. Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin. Proteins 18, 353ā€“ 366 (1994).

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Alonso, D.O.V. & Daggett, V. Staphylococcal protein A: unfolding pathways, unfolded states, and differences between the B and E domains. Proc. Natl. Acad. Sci. USA 97, 133ā€“ 138 (2000).

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Guo, Z., Brooks, C.L., 3rd & Boczko, E.M. Exploring the folding free energy surface of a three-helix bundle protein. Proc. Natl. Acad. Sci. USA 94, 10161ā€“ 10166 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Shea, J.E., Onuchic, J.N. & Brooks, C.L., III. Exploring the origins of topological frustration: design of a minimally frustrated model of fragment B of protein A. Proc. Natl. Acad. Sci. USA 96, 12512ā€“ 12517 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Zhou, Y. & Karplus, M. Interpreting the folding kinetics of helical proteins. Nature 401, 400ā€“ 403 (1999).

    CASĀ  Google ScholarĀ 

  11. Bai, Y., Karimi, A., Dyson, H.J. & Wright, P.E. Absence of a stable intermediate on the folding pathway of protein A. Protein Sci. 6, 1449ā€“ 1457 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Ropson, I.J. & Frieden, C. Dynamic NMR spectral analysis and protein folding: identification of a highly populated folding intermediate of rat intestinal fatty acid-binding protein by 19F NMR. Proc. Natl. Acad. Sci. USA 89, 7222ā€“ 7226 (1992).

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Huang, G.S. & Oas, T.G. Submillisecond folding of monomeric Ī» repressor. Proc. Natl. Acad. Sci. USA 92, 6878ā€“ 6882 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Burton, R.E., Huang, G.S., Daugherty, M.A., Fullbright, P.W. & Oas, T.G. Microsecond protein folding through a compact transition state. J. Mol. Biol. 263, 311ā€“ 322 (1996).

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T.G. The energy landscape of a fast-folding protein mapped by Alaā†’Gly substitutions. Nature Struct. Biol. 4, 305ā€“ 310 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Myers, J.K. & Oas, T.G. Contribution of a buried hydrogen bond to Ī» repressor folding kinetics. Biochemistry 38, 6761ā€“ 6768 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Kuhlman, B., Boice, J.A., Fairman, R. & Raleigh, D.P. Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding. Biochemistry 37, 1025ā€“ 1032 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Spector, S. & Raleigh, D.P. Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol. 293, 763ā€“ 768 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Burton, R.E., Myers, J.K. & Oas, T.G. Protein folding dynamics: quantitative comparison between theory and experiment. Biochemistry 37, 5337ā€“ 5343 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Myers, J.K. & Oas, T.G. Reinterpretation of GCN4-p1 folding kinetics: partial helix formation precedes dimerization in coiled coil folding. J. Mol. Biol. 289, 205ā€“ 209 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Pappu, R.V. & Weaver, D.L. The early folding kinetics of apomyoglobin. Protein Sci. 7, 480ā€“ 490 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138ā€“ 2148 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Burton, R.E., Busby, R.S. & Oas, T.G. ALASKA: a mathematical package for two-state kinetic analysis of protein folding reactions. J. Biomol. NMR 11, 355ā€“ 360 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Carr, H.Y. & Purcell, E.M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physics Review 94, 630ā€“ 638 (1954).

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688ā€“ 691 (1958).

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Orekhov, V., Pervushin, K.V. & Arseniev, A.S. Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H- 15N NMR spectroscopy. Eur. J. Biochem. 219, 887ā€“ 896 (1994).

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Wittung-Stafshede, P., Lee, J.C., Winkler, J.R. & Gray, H.B. Cytochrome b562 folding triggered by electron transfer: approaching the speed limit for formation of a four-helix-bundle protein. Proc. Natl. Acad. Sci. USA 96, 6587ā€“ 6590 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Chen, B.-L., Baase, W.A., Nicholson, H. & Schellman, J.A. Folding kinetics of T4 lysozyme and nine mutants at 12 Ā°C. Biochemistry 31, 1464ā€“ 1476 (1992).

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Tanford, C. Protein denaturation, Part C. Adv. Protein Chem. 24, 1ā€“ 95 (1970).

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Reimer, U. et al. Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J. Mol. Biol. 279, 449ā€“ 460 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Karplus, M. & Weaver, D.L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3, 650ā€“ 668 (1994).

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Bashford, D., Cohen, F.E., Karplus, M., Kuntz, I.D. & Weaver, D.L. Diffusion-collision model for the folding kinetics of myoglobin. Proteins 4, 211ā€“ 227 (1988).

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Duan, Y. & Kollman, P.A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282, 740ā€“ 744 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Jacob, M., Geeves, M., Holtermann, G. & Schmid, F.X. Diffusional barrier crossing in a two-state protein folding reaction. Nature Struct. Biol. 6, 923ā€“ 926 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Plaxco, K.W. & Baker, D. Limited internal friction in the rate-limiting step of a two-state protein folding reaction. Proc. Natl. Acad. Sci. USA 95, 13591ā€“ 13596 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Goldberg, J.M. & Baldwin, R.L. A specific transition state for S-peptide combining with folded S-protein and then refolding. Proc. Natl. Acad. Sci. USA 96, 2019ā€“ 2024 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L. & Matthews, C.R. Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled coil system. J. Mol. Biol. 296, 1105ā€“ 1116 (2000).

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Moran, L.B., Schneider, J.P., Kentsis, A., Reddy, G.A. & Sosnick, T.R. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc. Natl. Acad. Sci. USA 96, 10699ā€“ 10704 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Fersht, A.R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869ā€“ 10873 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Fersht, A.R. Transition state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc. Natl. Acad. Sci. USA 97, 1525ā€“ 1529 (2000).

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Mirny, L.A., Abkevich, V.I. & Shakhnovich, E.I. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA 95, 4976ā€“ 4981 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Plaxco, K.W., Simons, K.T. & Baker, D. Contact order, transition state placement, and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985ā€“ 994 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Alm, E. & Baker, D. Prediction of protein folding mechanisms from free-energy landscapes derived from native structures. Proc. Natl. Acad. Sci. USA 96, 11305ā€“ 11310 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Debe, D.A. & Goddard, W.A. First priciples prediction of protein folding rates. J. Mol. Biol. 294, 619ā€“ 625 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Galzitkaya, O. & Finkelstein, A. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc. Natl. Acad. Sci. USA 96, 11299ā€“ 11304 (1999).

    ArticleĀ  Google ScholarĀ 

  46. Munoz, V. & Eaton, W.A. A simple model for the calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. USA 96, 11311ā€“ 11316 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Clementi, C., Nymeyer, H. & Onuchic, J.N. Topological and energetic factors: what determines the structural details of the transition state ensemble and 'en-route' intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937ā€“ 953 (2000).

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Dalessio, P.M. & Ropson, I.J. Ī²-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry 39, 860ā€“ 871 (2000).

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Llinas, M., Gillespie, B., Dahlquist, F.W. & Marqusee, S. The energetics of T4 lysozyme reveal a hierarchy of conformations. Nature Struct. Biol. 6, 1072ā€“ 1078 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci. 24, 26ā€“ 33 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 77ā€“ 83 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Srinivasan, R. & Rose, G.D. A physical basis for protein secondary structure. Proc. Natl. Acad. Sci. USA 96, 14258ā€“ 14263 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Przytycka, T., Aurora, R. & Rose, G.D. A protein taxonomy based on secondary structure. Nature Struct. Biol. 6, 672ā€“ 682 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411ā€“ 2423 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Pace, C.N. & Scholtz, J.M. In Protein structure: a practical approach (ed. Crieghton, T.E.) 299ā€“ 321 (IRL Press, Oxford; 1997).

    Google ScholarĀ 

  56. Tashiro, M. et al. High-resolution solution NMR structure of the Z domain of staphylococcal protein A. J. Mol. Biol. 272, 573ā€“ 590 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Rohl, C.A., Chakrabartty, A. & Baldwin, R.L. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40% volume trifluoroethanol. Protein Sci. 5, 2623ā€“ 2637 (1996).

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Zimm, B.H. & Bragg, J.K. Theory of the phase transitions between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526ā€“ 535 (1959).

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Scholtz, J.M. et al. Calorimetric determination of the enthalpy change for the Ī±-helix to coil transition of an alanine peptide in water. Proc. Natl. Acad. Sci. USA 88, 2854ā€“ 2858 (1991).

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Smith, J.S. & Scholtz, J.M. Guanidine hydrochloride unfolding of peptide helices: separation of denaturant and salt effects. Biochemistry 35, 7292ā€“ 7297 (1996).

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystall. 24, 946ā€“ 950 (1991).

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

We are grateful to P. Wright for the gift of the plasmid expressing BdpA and L. Tennant for technical assistance. We also wish to thank R. Burton for the original suggestion of studying BdpA, and D. Weaver, R. Pappu, M. Karplus, G. Rose, F. Schmid, G. Hammes and the Oas lab group for helpful discussions. We thank the NIH for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence G. Oas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, J., Oas, T. Preorganized secondary structure as an important determinant of fast protein folding. Nat Struct Mol Biol 8, 552ā€“558 (2001). https://doi.org/10.1038/88626

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing