(Go: >> BACK << -|- >> HOME <<)

Academia.eduAcademia.edu
Review of Palaeobotany and Palynology 204 (2014) 56–117 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Review paper Review of the Cenozoic floras and vegetation of Greece☆ Dimitrios Velitzelos a, Johannes M. Bouchal b, Thomas Denk b,⁎ a b Athens University, Department of Geology and Geoenvironment, Section of Historical Geology and Paleontology, Panepistimiopolis, Athens 15784, Greece Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden a r t i c l e i n f o Article history: Received 24 September 2013 Received in revised form 5 February 2014 Accepted 7 February 2014 Available online 25 February 2014 Keywords: Greece Eastern Mediterranean Cenozoic Plant evolution Landscape evolution Mediterranean climate a b s t r a c t Oligocene to Pleistocene floras of Greece are reviewed based on published and unpublished material. Oldest plantbearing sediments of Rupelian–Chattian age are exposed in eastern Thrace (Evros) and were deposited after the closure of the Turgai Seaway. They contain a blend of (i) taxa that migrated to western Eurasia from the East (Alnus, Fagus), (ii) characteristic Oligocene taxa (Nyssa altenburgensis, Ampelopsis hibschii), and (iii) extinct (Eotrigonobalanus, Quasisequoia) and modern genera (Calocedrus, Quercus Group Lobatae) from older epochs. Coastal palm swamps and laurel forests of the hinterland indicate a subtropical, fully humid to winter-dry climate (Cfa, Cwa according to Köppen). The Aquitanian–Burdigalian plant assemblage of Lesbos is intermediary between Evros and the Burdigalian floras of Euboea sharing taxa with Evros (palms), and with Euboea and early Miocene floras of Anatolia (Güvem, Tilia). In the early Miocene (Burdigalian) floras of Euboea, species of Quercus Group Ilex (Quercus drymeja, Quercus mediterranea) characteristic of fully humid or winter-dry (monsoon) climates (Cf, Cw) became dominant elements in well-drained forests. Floristic links are with late Oligocene to middle Miocene floras of Central Asia (Tilia), Asia Minor (cycads, Quercus Group Ilex, Tilia), and South and Central Europe (cycads, Quercus Group Ilex, palms). Middle Miocene floras are restricted to the Aegean Islands (Chios). Biogeographic links are with early to late Miocene floras of Central Europe (Parrotia, Podocarpium) and with middle Miocene floras of Anatolia (Parrotia). Upper Miocene plant-bearing sedimentary formations are most abundant in Greece and exposed on the Ionian Islands, Greece mainland to East Macedonia, Peloponnese, Aegean Islands, and Crete. Overall, the fossil plant assemblages from Greece mainland are indicative of fully humid conditions during this time (Cfa), with Fagus and oaks of Quercus Group Ilex being dominant elements. Seasonality may have been more pronounced on the Peloponnese and the Aegaean Islands and Crete, expressed by the rare occurrence of Fagus in the fossil records of these areas. The palaeobotanical records from Samos unambiguously point to the presence of forest vegetation during early Tortonian to Messinian (Cwa) when the famous vertebrate faunas of Samos were deposited. The Pliocene is characterized by the regional occurrence of modern types of deciduous oaks mainly of Quercus Group Cerris and Quercus subsect. Galliferae. East Asian links persist in Fagus, Quercus, and Cupressaceae, North American ones in Sabal; several other mesophytic taxa from previous periods are recorded as well. The modern sclerophyllous Mediterranean vegetation, thriving in a warm summer dry climate (Csa), cannot be traced prior to the Pleistocene based on the palaeobotanical record. © 2014 Elsevier B.V. All rights reserved. Contents 1. 2. 3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Material and methods . . . . . . . . . . . . . . . . . . . . . . . . Palaeobotanical record of Greece, taxonomy and palaeovegetation . . . . 3.1. Oligocene . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1. Evros region, Thrace (Rupelian to Chattian) (Plates I–VI) 3.2. Early Miocene . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1. Greece mainland . . . . . . . . . . . . . . . . . . 3.2.2. Aegean Islands . . . . . . . . . . . . . . . . . . . 3.2.3. Palaeoecology and palaeogeography . . . . . . . . . . 3.2.4. Taxonomic notes . . . . . . . . . . . . . . . . . . ☆ Dedicated to Professor Evangelos Velitzelos. ⁎ Corresponding author. E-mail address: thomas.denk@nrm.se (T. Denk). http://dx.doi.org/10.1016/j.revpalbo.2014.02.006 0034-6667/© 2014 Elsevier B.V. All rights reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 59 59 59 69 69 71 72 76 57 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 3.3. Middle and late Miocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1. Greece mainland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2. Peloponnese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3. Aegean Islands and Crete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4. Pliocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1. Greece mainland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2. Peloponnese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3. Aegean Islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5. Pleistocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1. Megalopoli, Arcadia (Calabrian) (Table 20; Map 1, no. 42) . . . . . . . . . . . . . . . . . 3.5.2. Rhodes and Kos, South Aegean (Calabrian) (Table 21; Plate XXXIII; Map 1, nos. 43–45, 47) . . . 3.5.3. Latest Pleistocene of Santorini, South Aegean Sea (60ka) (Table 22; Plate XXXIV; Map 1, no. 46) 4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1. Cenozoic vegetation development and ecological shifts . . . . . . . . . . . . . . . . . . . . . . . 4.1.1. Oligocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2. Miocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3. Pliocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4. Pleistocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2. Distribution patterns of Cenozoic plants: biogeographic signals or stochasticity . . . . . . . . . . . . 4.3. Landscape evolution in the eastern Mediterranean region: the savannah myth revisited . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A. Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Introduction At present, most parts of Greece enjoy a Mediterranean climate with hot and dry summers caused by the Subtropical High and cyclonic rains in winter due to the North Atlantic Oscillation (Walter, 1973). Mediterranean sclerophyllous forests are the climax vegetation under such a climate (Schroeder, 1998). The modern Mediterranean climate and vegetation are a young phenomenon and cannot be traced further back than to the late Pliocene (e.g. Suc, 1984). Nevertheless, “Mediterranean elements” and sclerophyllous plant taxa that were interpreted to reflect truly Mediterranean conditions have been reported in western Eurasia from all periods of the Cenozoic (Palamarev, 1989; Mai, 1995). The origin of sclerophyllous vegetation and the evolution of the adaptive characters of its taxa have variously been discussed in a northern hemispheric context (Axelrod, 1975; Kadereit and Baldwin, 2012). Cenozoic floras of Greece have been in the focus of palaeobotanical research since the middle of the 19th century (e.g. Brongniart, 1833; Sauvage, 1846; Heer, 1859; Brongniart, 1861; Unger, 1862, 1867; Saporta, 1868; Fuchs, 1877; Teller, 1880; Fritel, 1921a,b). One of the most representative Cenozoic plant taxa of the Northern Hemisphere, Glyptostrobus europaeus, was originally described from the lower Miocene of Allonisos (as île d'Iliodroma), an island of the Northern Sporades (Brongniart, 1833). Major biogeographic questions have been addressed by Unger (1867), who compared plant fossils from the lower Miocene of Kimi to southern hemispheric genera of the family Proteaceae, long before Wegener's theory of the continental drift had been formulated, and hence suggesting that plant groups that are today confined to areas outside Europe may have had a much wider distribution in the past. Intensified research on the Cenozoic floras of Greece started in the 1970ies (Velitzelos, 1974) and since then a great number of new floras have been discovered and described (e.g. Knobloch and Velitzelos, 1986a, 1986b; Kleinhölter, 1994a, 1994b, 1995b; Sachse, 1997; Mai and Velitzelos, 2002) including a monograph on the late Miocene flora of Vegora from northern Greece (Kvaček et al., 2002). Overviews about Greek floras have previously been compiled by Velitzelos and Gregor (1990) and Velitzelos (1993), and Gregor (1990) reviewed the Cenozoic vegetation and climate history in the Mediterranean region. In the present paper we provide updated and new flora lists for most of the known Cenozoic Greek plant fossil localities along with illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 76 97 97 99 99 101 106 106 106 106 109 109 109 109 109 112 112 112 113 114 114 114 of representative taxa. We review previous work and discuss more than 50 Oligocene to latest Pleistocene plant assemblages from Greece in a Mediterranean, western Eurasian, and northern hemispheric context. Major taxonomic changes in plant communities are discussed in view of regional and large scale environmental and climatic changes. Temporal and spatial changes of vegetation across Greece are traced and the timing of the origin of the modern Mediterranean vegetation is discussed. 2. Material and methods The present paper is based on plant fossil material stored at the University of Athens. Most of the material has been collected since the 1970s by various people. Major collections were assembled by Evangelos and Dimitrios Velitzelos in collaboration with Erwin Knobloch, Dieter Hans Mai, Herbert Süss, Hans-Joachim Gregor, Thomas Denk and others. In addition, important material from the Peloponnese was collected by Klaus Kleinhölter and from Crete by Markus Sachse and Giannis Zidianakis. Historical collections assembled in the course of Brongniart's, Unger's and other studies of the fossil flora of Kimi are stored at various European museums and universities, e.g. Paris and Vienna. Published accounts on Cenozoic plant assemblages from Greece are reviewed and the nomenclature and determinations revised when necessary. This is particularly important to enable comparability between fossil plant assemblages and to avoid taxonomic redundancy. In addition to the revised floral lists, a number of unpublished floras are presented. In order to assess the broad palaeoecology of fossil plant taxa, the ecology of their potential modern analogs was considered. Depending on the taxonomic resolution, modern analogs may be species, infrageneric groups, genera, or families. For systematic evaluation of fossil taxa, phylogenetic frameworks were considered when available (e.g. Denk and Grimm, 2009a, 2010). In addition, sedimentary context and context of fossil plant assemblages was used to infer the palaeoecology of fossil taxa (e.g. Walther, 1972, for Acer; Walther, 1989, for Cunninghamia; Kvaček and Walther, 1989, for Eotrigonobalanus; Kunzmann, 1999, for Quasisequoia; Kvaček et al., 2005, for Craigia; Denk and Grimm, 2009b, for Fagus). The fossil plant assemblages were qualitatively compared to contemporaneous Greek and western Eurasian plant assemblages to 58 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 establish floristic similarities and biogeographic trends. The spatial and temporal distribution of plant lineages was further used to place the floras into biogeographic context and to see whether distinct biogeographic patterns were present at various times and in various regions. We use the term Greece mainland to denote the region comprising the administrative regions of Western Macedonia, Epirus, Thessaly, Ionian Islands and Central Greece. The regions Central Macedonia and Eastern Macedonia and Thrace are treated separately. Peloponnese denotes the regions Western Greece and Peloponnesus. The islands comprise those of the Southern Aegean and Northern Aegean regions, and Crete. Authorities for fossil plant names are provided in Tables 1–22. Therefore, no authorities are given in the text body, except for taxa not included in Tables 1–22. The format of plant authors followed IPNI (2012). Throughout the text, fossil plant assemblages are used to climatically characterize regions within Greece at different times. Climate types are expressed using the Köppen–Geiger climate classification (for details see Kottek et al., 2006; Denk et al., 2013). For a semi-quantitaive approach to use Köppen climate types to infer Cenozoic climate, see Denk et al. (2013). Table 1 Taxa recorded from the Oligocene of Evros (Map nos. 1–5). Rupelian–Chattian volcanic complex, Evros Mountains, Thrace (Velitzelos et al., 2002a; new records in bold) ■ Locality Lagina a Pronephrium stiriacum (Unger) Erw. Knobloch et Kvaček Aff. Ampelopsis hibschii Bůžek, Kvaček et Walther [as Acer aff. tricuspidatum Bronn forma crenatifolium Ettingshausen] Alnus aff. schmalhausenii Grubov Cedrela attica (Unger) Palamarev et Petkova Daphnogene cinnamomifolia (Brongniart) Unger Eotrigonobalanus furcinervis (Rossmässler) Walther et Kvaček Fagaceae gen. et sp. indet. Fagus castaneifolia Unger [as Fagus aff. antipofii Heer] Laurophyllum sp. Ziziphus ziziphoides (Unger) Weyland ■ Lyra (Lira) Calocedrus suleticensis (Brabanec) Kvaček Pinus palaeostrobus Ettingshausen Pinus cf. rigios Ettingshausen Comptonia difformis (Sternberg) Berry forma dryandroides (Unger) Velitzelos, Kvaček et D. Velitzelos Daphnogene cinnamomifolia (Brongniart) Unger Dicotylophyllum sp. cf. Juglans acuminata A. Braun Dicotylophyllum sp. cf. Nyssa haidingeri (Ettingshausen) Kvaček et Bůžek Dicotylophyllum sp. aff. Quercus daphnes Unger Dicotylophyllum sp. cf. Quercus rhenana (Kräusel et Weyland) Erw. Knobloch et Kvaček Dicotylophyllum sp. Eotrigonobalanus furcinervis (Rossmässler) Walther et Kvaček Fagaceae gen. et sp. indet. Cf. Lauraceae sp. Laurophyllum sp. 1 (narrow) Laurophyllum sp. 2 (broad) Myrica longifolia Unger Cf. Nyssa altenburgensis Walther et Kvaček vel N. haidingeri (Ettingshausen) Kvaček et Bůžek Platanus neptuni (Ettingshausen) Bůžek, Holy et Kvaček Ziziphus ziziphoides (Unger) Weyland ■ Lykovi [Likofos] Cf. Cunninghamia miocenica Ettingshausen Pinus palaeostrobus Ettingshausen (needle leaves in fascicles of five) Comptonia difformis (Sternberg) Berry forma dryandroides (Unger) Velitzelos, Kvaček et D. Velitzelos Laurophyllum sp. 2 (broad) Table 1 (continued) Rupelian–Chattian volcanic complex, Evros Mountains, Thrace (Velitzelos et al., 2002a; new records in bold) ■ Fylakton (Filakto) Pronephrium stiriacum (Unger) Erw. Knobloch et Kvaček b Rumohra recentior (Unger) Barthel Pinus palaeostrobus Ettingshausen (needle leaves in fascicles of five) Pinus cf. rigios Ettingshausen (needle leaves in fascicles of three) Quasisequoia couttsiae (Heer) L. Kunzmann b Taxodium dubium (Sternberg) Heer Indet. angiosperm leaf b,c [as Acer tricuspidatum Bronn] Alnus gaudinii (Heer) Erw. Knobloch et Kvaček Alnus sp. strobilusb [as Alnus pseudogracilis Budantsev et Shveshnikov] Alnus aff. schmalhausenii Grubov Alnus sp. (p.p.)b [as Fagus antipofii Heer] b Aff. Ampelopsis hibschii Bůžek, Kvaček et Walther Cf. Cedrela attica (Unger) Palamarev et Petkova Comptonia difformis (Sternberg) Berryb [as Comptonia schrankii (Sternberg) Berry (syn. C. dryandroides Unger)] Daphnogene cinnamomifolia (Brongniart) Unger [as D. cinnamomea (Rossmässler) Erw. Knobloch], b[As Neolitsea apicifolia (Saporta) Marion] Dicotylophyllum sp. 1 Dicotylophyllum sp. 2 Dicotylophyllum sp. 3b [as Rhamnus sp.] Dicotylophyllum sp. 4b [as Salix varians Göppert] Eotrigonobalanus furcinervis (Rossmässler) Walther et Kvaček b [As Castaneophyllum venosum(Rossmässler) Erw. Knobloch et Kvaček] b [As Dryophyllum curticellense (Watelet) Saporta et Marion] Fagaceae gen. et spec. indet.b [as Lithocarpus palaeorhodopensis Palamarev et Mai] Indet. angiosperm leafb [as Matudaea palaeo-balcanica Palamarev et Petkova] Cf. Laria rueminiana (Heer) G. Worobiec et Kvačekb [as Dombeyopsis lobata Unger] Cf. Lauraceaeb [as Ocotea laurifolia Vassilevskaja] Laurophyllum sp. Myrica longifolia Unger Cf. Nyssa altenburgensis Walther et Kvaček vel N. haidingeri (Ettingshausen) Kvaček et Bůžek b As Nyssa maxima Petrescu, Givulescu et Barbu non Weber 1852 (?) [probably not Nyssa] Phoenicites aff. salicifolius(C. Presl in Sternberg) Unger Populus aff. balsamoides Göppert Populus germanica (Menzel) Walther b Rhodomyrtophyllum sinuatum (Bandulska) Walther Sabal lamanonis (Brongniart) Heer [as Sabal major (Unger) Heer] b Smilax weberi P. Wessel b Sterculia labrusca Unger Ziziphus ziziphoides (Unger) Weyland ■ Aetochori Sabal lamanonis (Brongniart) Heer Sabal raphifolia (Sternberg) Erw. Knobloch et Kvaček a The genus Pronephrium Presl 1849 is variously treated as its own genus or as subgenus of CyclosurusLink 1833: Subgenus Abacopteris Fée comprising 72 spp. from India, throughout Malesia to Queensland and Fiji (Smith, 1990). b Butzmann et al. (2007). c Velitzelos et al. (2002a). Table 2 Taxa recorded from the lower Miocene of Grevena (Map no. 6). Miocene layers of Grevena, Milea (this study) Pronephrium stiriacum (Unger) Erw. Knobloch et Kvaček Cryptomeria sp. Acer tricuspidatum Bronn Carpinus sp. Daphnogene polymorpha (A. Braun) Ettingshausen Myrica lignitum (Unger) Saporta Phoenicites sp. Populus populina (Brongniart) Erw. Knobloch Pterocarya paradisiaca (Unger) Iljinskaya Quercus pseudocastanea Göppert Quercus sp. (acorns) Ulmus braunii Heer Zelkova zelkovifolia (Unger) Bůžek et Kotlaba D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 59 Map 1. Numbers 1 to 47 indicate age and geographic positions of Cenozoic plant fossil localites of Greece dealt with in the present study. Oligocene: 1. Lagina, 2. Lyra, 3. Lykovi, 4. Fylakton, 5. Aetochori. Early Miocene: 6. Grevena, 7. Aliveri, 8. Kimi, 9. Oropos, 10. Nea Stira, 11. Allonisos [as “Iliodroma”], 12. Lesbos, 13. Kastron–Lemnos, 14. Moudros. Middle and late Miocene: 15. Chios–Zyfia, 16. Chios–Kap Nenita, 17. Chios–Kato Komi, 18. Vegora, 19. Komnina, 20. Prosilio and Lava, 21. Likoudi and Drymos (Elassona), 22. Corfu–Paghi, 23. Kavala, 24. Iliokomi– Kormitsa, 25. Platana Fm., 26. Lala, 27. Pikermi, 28. Pappades, 29. Makrilia, 30. Pitsidia, 31. Vrysses, 32. Samos, 33. Kos–Vasilio Fm. Pliocene: 34. Ptolemaida, 35. Atalanti, 36. Arkitsa, 37. Skoura, 38. Kythira–Agios Mamas basin, 39. Patra, 40. Makrision, 41. Vatera. Pleistocene: 42. Choremis, 43. Rhodes–Archangelos, 44. Rhodes–Kallithea, 45. Rhodes–Lindos, 46. Santorini, 47. Kos–Irakli Fm. See also Electronic Supplements 1 and 2. 3. Palaeobotanical record of Greece, taxonomy and palaeovegetation 3.1. Oligocene 3.1.1. Evros region, Thrace (Rupelian to Chattian) (Plates I–VI) Plant fossil bearing sediments of the volcanic complex of Evros are of early to late Oligocene age. Volcanic rocks from the region have been radiometrically dated from various levels of the Evros complex suggesting Oligocene and early Miocene periods of main volcanic activity (Innocenti et al., 1984; Christofides et al., 2004; Iamandei et al., 2010). For the area north of Tycheron, radiometric ages range from ca. 30 to 28 Ma (late Rupelian/early Chattian; Christofides et al., 2004). Plant fossils originate from the volcano-sedimentary Provaton series that discordantly overlays the lower series of the volcanic complex. A Chattian age has been inferred for the Provaton series based on lithostratigraphy and brackish ostracods and molluscs (Kopp, 1965). Kopp (1965) also reported fossil plant remains, palm foliage and permineralized wood at Aetochori and Pakte Dere, connected to the lignite-bearing volcano-clastic rocks of the Provaton series. In consequence, combined evidence from absolute ages of basaltic rocks, lithostratigraphy, and faunal data, indicates a Rupelian to Chattian age for the plant-bearing sediments of the Evros region. Four plant localities are found north of Tycheron at Lagina, Lira, Likofos, and Filakto. Here, the river Evros forms the natural boundary between Greece and Turkey. A further locality is farther apart south of Alexandroupoulis at Aetochori (Map 1, no. 5). The fossiliferous rocks, hard brown fine-grained tuffite, yielded whole leaves of fan palms (Plate II), which dominate the assemblage of Aetochori (Velitzelos et al., 2002a). At all the other localities, the extinct Fagaceae Eotrigonobalanus furcinervis and the extinct Cupressaceae Quasisequoia couttsiae are most abundant. An updated list of taxa recovered from the Evros area is provided in Table 1. 3.1.1.1. Lagina [Lagyna; Map 1, no. 1]. At Lagina fossiliferous horizons comprise yellowish tuffitic siltstone within sandy deposits in a fluviatile facies accessible on a road cut. The plant assemblage comprises ferns and angiosperms. Eotrigonobalanus and Alnus are most common and may have formed riparian stands with the fern Pronephrium stiriacum 60 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 61 Plate II. Palms from Evros, Thrace. 1, 2. Sabal lamanonis. 1. Aetochori. 2. Fylakton. 3 to 5. Sabal raphipholia. Aetochori. 6. Phoenicites aff. salicifolius. Fylakton. Scale bar is 5 cm. in the undergrowth. A single specimen of Fagus castaneifolia has been recovered (Plate III, 12). Large leaves such as the one from Lagina co-occur with the more typical smaller leaves recovered from early Miocene sediments at Kimi, Euboea (see below), Güvem (early Miocene, northwestern Central Anatolia; Paicheler and Blanc, 1981, as Fagus pristina Saporta; T. Denk, personal observation), and southern France Plate I. Ferns from the Oligocene of Evros, Thrace. 1 to 3. Pronephrium stiriacum. Fylakton. 1. Fragment of frond. 2, 3. Detail of pinnae, showing characteristic venation and fused segments of pinnae. 4, 5. Rumohra recentior. Fylakton. 4. Part of frond. 5. Pinna with pinnules. 6. Calocedrus suleticensis, branchlet. Lyra. 7 to 9. Quasisequoia couttsiae. Fylakton. 7, 9. Fertile branches with terminal cone. 8. Axis with leaves. 10. Pinus cf. rigios, leaves in fascicle of three. Lyra. 11. Pinus palaeostrobus, leaves in fascicle of five. Lyra. Scale bar is 1.5 cm in 1, 2 cm in 2 to 11. 62 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 63 Plate IV. Angiosperms from Evros, Thrace. 1 to 3. Daphnogene cinnamomifolia. Fylakton. 4. Laurophyllum sp. aff. L. pseudoprinceps. Fylakton. 5, 6. cf. Nyssa altenburgensis. Fylakton. 7, 8. Comptonia difformis. Lyra. 9, 10. Myrica longifolia. 9. Lyra. 10. Fylakton. Scale bar is 1 cm in 6; 3 cm in 1 to 5 and 7 to 10. (Bois d'Asson, late Oligocene; Saporta, 1867, as F. pristina; Denk, 2004). Fagus may either have been part of well-drained areas within the riparian system (hammocks) or originated from the hinterland. Also Ziziphus (Plate V, 2–4) grew in the hinterland, probably on edaphically drier stands than Fagus (cf. Kvaček and Walther, 1989, “Eotrigonobalanus–Ziziphus ziziphoides association”). A number of further species may have been part of both riparian and well-drained mesic forests: Alnus, Cedrela, Daphnogene, Eotrigonobalanus, and the liana Ampelopsis hibschii (Plate VI, 1–3). 3.1.1.3. Lykovi [Likofos; Map 1, no. 3]. At Lykovi, only a poorly preserved plant assemblage was recovered from the coarse-grained tuffite. A single leafy axis of a Pinaceae resembles Cunninghamia miocaenica based on the prominent leaf scars on the twig (see Section 3.2.2.1). 3.1.1.2. Lyra [Lira; Map 1, no. 2]. At Lyra, white, partly bedded finegrained to coarse-grained tuffites comprise mainly Eotrigonobalanus and Lauraceae. In addition, Calocedrus suleticensis, Platanus neptuni, and Nyssa are typical elements of swamp and riparian forests. Eotrigonobalanus, Daphnogene and Quasisequoia may also have been elements of well-drained forests in the hinterland. Myrica longifolia, and 3.1.1.4. Fylakton [Filakto; Map 1, no. 4]. A great number of petrified trunks were found at Fylakton and were identified as Lithocarpoxylon and Quercoxylon. According to Selmeier and Velitzelos (2000) they all belong to the “evergreen Quercus-type of wood” and probably represent trunks of Eotrigonobalanus. Leaves of Eotrigonobalanus are very abundant in the fossiliferous bluish fine-grained tuffite (Velitzelos et al., 1999). Mesic Comptonia difformis based on their small and possibly xeromorphic leaves may have been elements of edaphically drier stands (see Mai, 1995 and references therein). Plate III. Angiosperms from Evros, Thrace. 1. Alnus aff. gaudinii/schmalhausenii. Fylakton. 2. Alnus gaudinii. Fylakton. 3. Alnus aff. schmalhausenii. Fylakton. 4 to 9. Eotrigonobalanus furcinervis. Note the variable leaf margin and leaf shape. 4, 5, 7. Lyra. 6, 8, 9. Fylakton. 10, 11. Dicotylophyllum sp. cf. Quercus daphnes. Similar venation and leaf shape are found in members of Quercus Group Lobatae, e.g. Q. crassipes Bonpland. Lyra. 12. Fagus castaneifolia. Lagina. 13 to 15. Cedrela attica. 13, 14. Fylakton. 15. Lagina. Scale bar is 1 cm in 14; 2 cm in 1 to 13 and 3 cm in 15. 64 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate V. Angiosperms from Evros, Thrace. 1. Platanus neptuni. Lyra. 2 to 4. Ziziphus ziziphoides. 2, 3. Fylakton. 4. Lyra. 5, 6. Rhodomyrtophyllum sinuatum. Fylakton. 7. Populus germanica. Fylakton. 8. Populus aff. germanica. Fylakton. 9. Populus cf. balsamoides. Fylakton. Scale bar is 2 cm in 5, 3 cm in 1 to 4, 6 to 9. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 65 Plate VI. Angiosperms from Evros, Thrace. 1 to 3. Ampelopsis hibschii. Lagina. 4. Ampelopsis vel Populus. Fylakton. 5. Dicotylophyllum sp. Lyra. 6. Dicotylophyllum sp. Lyra. 7. Dicotylophyllum sp. Quercus daphnes vel Myrica sp. Lyra. 8. Sterculia labrusca. Fylakton. 9. Dicotylophyllum sp. Fylakton. Scale bar is 3 cm. 66 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 3 Taxa recorded from the lower Miocene of Euboea (Map nos. 7–10). Burdigalian of Euboea ■ Aliveri (Gregor, 1983; Velitzelos and Gregor, 1990; Mai and Velitzelos, 1992) Glyptostrobus europaeus (Brongniart) Unger (l, d) Pinus nodosa Ludwig Pinus sp. Sequoia abietina (Brongniart) Erw. Knobloch Alnus gaudinii (Heer) Erw. Knobloch et Kvaček Carex plicata Lancucka–Srodoniowa (d) Carya ventricosa (Sternberg) Unger (d) Celtis lacunosa (Reuss) Kirchheimer (d) Cephalanthus kireevskianus (Raniecka–Bobrowska) Dorofeev (d) Ceratophyllum sp. (d) Ceratostratiotes sinjanus (Kerner) Bůžek Cladium oligovasculare Mai in Knobloch, 1978 (d) Cladium paleomariscus Dorofeev (d) Comptonia acutilobaBrongniart Comptonia sp. Daphnogene polymorpha [as Cinnamomum lanceolatum] Daphnogene polymorpha [as Cinnamomum polymorphum] Decodon globosus (E. Reid) Nikitin (d) Dicotylophyllum sp. Fabaceae (as Leguminosae) Fagus castaneifolia Unger [as Fagus attenuata Göppert] Junglans acuminata A. Braun Laurophyllum sp. Lauraceae vel Fagaceae [as Laurus primigenia Unger] Magnolia sp. Myrica ceriferiformoides Bůžek et Holý (d) Myrica lignitum Unger Myrica sp. Paliurus sibiricus Dorofeev (d) Populus populina (Brongniart) Erw. Knobloch Quercus drymeja Unger [as Quercus cf. lonchitis Unger, partly as Quercus ilex L.] Quercus mediterranea Unger Rubus laticostatus Kirchheimer (d) Sambucus pusilla Dorofeev (d) Sparganium camenzianum Kirchheimer (d) Sparganium elongatum Dorofeev (d) Toddalia latisiliquata (Ludwig) H.-J. Gregor (d) Toddalia naviculaeformis (Reid) H.-J. Gregor (d) Zanthoxylon ailanthiforme (Gregor) H.-J. Gregor (d) ■ Kimi and Nea Stira (Velitzelos, 1993; Velitzelos et al., 2002b; new records in bold) Lygodium gaudinii Heer “Encephalartos” gorceixianus Saporta Pinus holothana Unger (d) Pinus hampeana (Unger) Heer (d) Pinus spp. Cupressus sp. Tetraclinis salicornioides (Unger) Kvaček Tetraclinis brachyodon (Brongniart) Mai Calocedrus suleticensis (Brabanec) Kvaček Glyptostrobus europaeus (Brongniart) Unger Taxodium dubium (Sternberg) Heer vel Sequoia abietina (Brongniart) Erw. Knobloch Acer palaeosaccharinum Stur (only from Nea Stira) Acer tricuspidatum Bronn ?Aesculus sp. vel Araliaceae Alnus cf. gracilis Unger Alnus cycladum Unger Alnus gaudinii (Heer) Erw. Knobloch et Kvaček Alnus kefersteinii (Göppert) Unger (d) Berberis kymeana (Unger) Kvaček et Erdei Berberis sp. Berberis sp. nov. aff. Berberis Group Septentrionales Betula oreadum Unger Carpinus grandis Unger Cedrela attica (Unger) Palamarev et Petkova Cedrelospermum aquense Saporta (d) Cedrelospermum ulmifolium (Unger) Kovar-Eder et Kvačeka Ceratostratiotes sinjanus (Kerner) Bůžek (d) Comptonia difformis (Sternberg) Berry f. dryandroides (Unger) Velitzelos, Kvaček et D. Velitzelos Daphnogene polymorpha (A. Braun) Ettingshausen Dicotylophyllum spp. Engelhardia macroptera (Brongniart) Unger (d) Table 3 (continued) Burdigalian of Euboea Engelhardia orsbergensis (P. Wessel et Weber) Jähnichen, Mai et Walther Fabaceae div. Fagaceae gen. et sp. indet. Fagus castaneifolia Unger cf. Gordonia sp. Lauraceae vel Fagaceae Laurophyllum acutimontanum Mai Laurophyllum pseudoprinceps Weyland et Kilpper Laurophyllum sp. Liquidambar europaea A. Braun (only from Nea Stira) Mastixicarpum cacaoides (Zenker) Mai (d) Myrica lignitum (Unger) Saporta/ceriferiformis Kownas Myrica solonis (Unger) Saporta Myrica vindobonensis (Ettingshausen) Heer Populus populina (Brongniart) Erw. Knobloch Quercus drymeja Unger Quercus mediterranea Unger ?Platanus neptunii (Ettingshausen) Bůžek, Holý et Kvaček ?Rosa sp. Saportaspermum sp. (d) Smilax sp. nov. ex Group Havanensis [as“Ilex” cyclophylla Unger] Smilax weberi P. Wessel [as Smilax sp.] Tilia knoblochii Velitzelos, D. Velitzelos et H.-J. Gregor (d) Trigonobalanopsis rhamnoides (Rossmässler) Kvaček et Walther Ulmus braunii Heer (foliage) Zelkova zelkovifolia (Unger) Bůžek, Kotlaba Ziziphus ziziphoides (Unger) Weyland a Very similar to: Cedrelospermum lineatum (Lesquereux) Manchester. Plant organs are leaves if not indicated otherwise. d = diaspore, l = leaf. laurel forests with Eotrigonobalanus, other Fagaceae, Lauraceae, and Rhodomyrtophyllum may have comprised accessory elements such as Sterculia and Ziziphus. In addition, lianas are represented by Smilax weberi (Butzmann et al., 2007) and may have been part of welldrained mesic forests as well as riparian and swamp forests. Swamp forests comprised Quasisequoia, Taxodium, Nyssa and Alnus. Palms may have been accessory elements in these forests. Riparian elements are Populus and ferns. 3.1.1.5. Palaeoecology and palaeogeography. The Evros region is situated at the southeastern foothills of the Rhodopes. During most of the Oligocene the Rhodopes connected Central Europe and Anatolia as a narrow subaerial mountain range bordered by the Paratethyan Sea to the north and the Mediterranean Sea to the south (cf. plates 2 and 3 in Rögl, 1998). This caused distinct maritime conditions. At the same time, during the late Oligocene a warming trend reduced the continental ice-sheets in Antarctica resulting in the “Late Oligocene Warming” (Zachos et al., 2001). These two factors are likely to have determined the palaeo-environment of the floras of Evros. The early to late Oligocene floras of the Evros region comprise a mixture of elements that were characteristic in older Eocene and Oligocene strata of Eurasia and North America and of modern broad-leaved deciduous elements. The former are mainly represented by Rumohra, Quasisequoia, Eotrigonobalanus, Platanus neptuni, Rhodomyrtophyllum, Sterculia labrusca, Myrica longifolia, and palms. Some of these elements may have persisted into the late Miocene of South Europe (e.g. Sterculia labrusca reported from Senigallia, cf. Massalongo and Scarabelli, 1859). The latter group includes tree genera, which migrated to Europe mainly from Central Asia via the Turgai Seaway after its closure in the early Oligocene (e.g. Alnus, Fagus; Walther, 1994; Denk and Grimm, 2009b). Kvaček and Walther (1989) suggested that plant assemblages with Eotrigonobalanus and Ziziphoides ziziphoides from Oligocene sediments of the Balkan Peninsula reflect laurel forest thriving in a monsoon influenced climate but also that Eotrigonobalanus more commonly had become part of riparian vegetation by the Oligocene. The plant assemblages of Evros fit well with the lignite derived swamp forest termed by Walther (1990) “Athrotaxis [= Quasiseqoia] couttsiae D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 67 Table 4 Taxa recorded from the lower Miocene of Lesbos (Map no. 12). Burdigalian of Lesbos [Lesvos] (Velitzelos et al., 1981; Velitzelos and Gregor, 1990) Current study Previous identification Same Same Same Same Same Same Daphnogene polymorpha (A. Braun) Ettingshausen Dicotylophyllum sp. 1 (aff. Cedrela attica (Unger) Palamarev) Dicotylophyllum sp. 2 Dicotylophyllum sp. 3 Engelhardia orsbergensis (Weber) Jähnichen, Mai et Walter Lauraceae vel Fagaceae gen. et spec. indet. Lauraceae vel Fagaceae gen. et spec. indet. Lauraceae vel Fagaceae gen. et spec. indet. Lauraceae vel Fagaceae gen. et spec. indet. Lauraceae vel Fagaceae gen. et spec. indet. Lauraceae vel Fagaceae aff. Castanopsis bavarica Erw. Knobloch et Kvaček Laurophyllum sp. Laurophyllum sp. Phoenicites sp. Same Same Pungiphyllum cruciatum (A. Braun) Frankenhäuser et Wilde Same Same; partly Alnus cycladum Unger Sabal major (Unger) Heer Same Sequoia abietina (Brongniart) Erw. Knobloch vel Taxodium sp. Cunninghamia miocaenica Ettingshausen Pinus sp. (cone) Tetraclinis salicornioides (Unger) Kvaček [island Megalonissi] Carpinus pliofauriei Ratiani Carpinus uniserrata (Kolakovski) Ratiani Cinnamomum polymorphum Heer Myrsinites sp. Lindera ovata Kolakovski Sapotaceae Engelhardia sp. Quercus apocynophyllum Ettingshausen Laurus primigenia Heer Laurus sp. Lauraceae Litsea primigenia (Unger) Takhtajan Diospyros brachysepala Heera Oreodaphne heeri C.T. Gaudin Diospyros brachysepala Heer Phoenix sp. Populus balsamoides Göppert Populus sp. Quercus cruciata A. Braun Rhus sp. “Rubus niacensis” Marty Sabal sp. Tilia sp. Wood remains (Süss and Velitzelos, 1994a,b; 1997; 1998; 1999; 2000; 2001; 2009; 2010; Velitzelos and Zouros, 2000) Modern analogue Pinoxylon paradoxum Süss et Velitzelos 1994 Pinoxylon pseudoparadoxun Süss et Velitzelos 1994 Chimairoidoxylon lesboense Süss et Velitzelos 1999 Podocarpoxylon articulatum Süss et Velitzelos 2000 Podocarpoxylon graciliradiatum Süss et Velitzelos 2000 Chimairoidoxylon conspicuum Süss et Velitzelos, 2001 Pinoxylon diversiradiatum Süss et Velitzelos 2009 Pinoxylon graciliradiatum Süss et Velitzelos 2009 Lesbosoxylon ventricosuradiatum Süss et Velitzelos 2010 Ginkgoxylon lesboense Süss et Velitzelos 2003 Ginkgoxylon diversicellulatum Süss et Velitzelos 2003 Glyptostroboxylon microtracheidale Süss et Velitzelos 1997 Taxodioxylon gypsaceum (Göppert) Kräusel [in Süss and Velitzelos, 1997] Taxaceoxylon biseriatum Süss et Velitzelos, 1994 Taxodioxylon albertense (Penhallow) Shimakura 1997 Taxodioxylon pseudoalbertense M. Nishida et H. Nishida [in Süss and Velitzelos, 1997] Taxodioxylon megalonissum Süss et Velitzelos 1997 Tetraclinoxylon velitzelosii Süss 1997 Thujoxylon antissum Süss et Velitzelos 1998 Laurinoxylon sp. Palmoxylon sp. Populoxylon sp. Quercoxylon sp. a Coniferales Coniferales Coniferales Coniferales Coniferales Coniferales Coniferales Coniferales Coniferales Ginkgoaceae Ginkgoaceae Cunninghamia lanceolata (Lambert) Hooker Sequoia sempervirens (D. Don) Endlicher aff. Taxaceae Taxodiaceae Taxodiaceae Taxodiaceae Tetraclinis Thuja Lauraceae Arecaceae Salicaceae Fagaceae Figured in Velitzelos and Zouros (2000). swamp forest” for the Oligocene of Central Europe which comprises Eotrigonobalanus, sabaloid and calamoid palms, Daphnogene, Myrica, and ferns. In addition, Eotrigonobalanus and Quasisequoia might also have played important roles in well-drained mesic forests of the hinterland (Kunzmann, 1999). The plant assemblage of Aetochori dominated by diverse palms may represent a near-coastal swamp forest. Rupelian to Chattian pollen profiles from the adjacent Thrace Basin, Northwest Turkey, indicated the presence of rich mangroves and palm coastal stands for the Rupelian, coinciding with a Rupelian sea transgression (Akgün et al., 2013). The lignite derived samples from younger horizons did not contain mangrove taxa and fewer palms. Inland vegetation was suggested for these pollen and spore assemblages. The lack of mangrove in these samples was linked to the late Rupelian to early Chattian marine regression. Fagus pollen is confined to these latter samples. Furthermore, the moderate diversity of Fagaceae pollen types, Myrica and transient peak of Alnus are in agreement with the coeval macrofossil record of the Evros region. In contrast, the relative contribution of conifer taxa to the Oligocene vegetation is not captured in the palynological records of Turkey, nor is the diversity of Lauraceae. The late Oligocene Ashutas flora from Kazakhstan (Krishtofovich et al., 1956) includes several species, which are similar to the Evros plant assemblages: Fagus castaneifolia (as Fagus antipofi Heer), Populus, Nyssa (as Quercus alexeevii Pojarkova), and Alnus schmalhausenii. Some of these taxa migrated to Europe during the Oligocene after the closure of the Turgai Seaway. As such they provide a biogeographic link between the Greek and the Central Asian floras. The complete absence of evergreen Fagaceae, Lauraceae, and palms in the Ashutas flora points to the markedly different palaeoenvironments of the Ashutas flora (cooler) as compared to the Evros and other South and Central European floras. This is also indicated by the possible presence of 68 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 5 Taxa recorded from the lower Miocene of Lemnos (Map nos. 13, 14). Burdigalian of Lemnos (Berger, 1953a; Süss and Velitzelos, 1993) ■ Myrina (“Kastron”) Acer tricuspidatum Bronn [as A. trilobatum A. Braun] Daphnogene polymorpha (A. Braun) Ettingshausen [as Cinnamomum polymorphum (A. Braun) Kräusel et Weyland] Daphnogene polymorpha (A. Braun) Ettingshausen [as Daphnogene lanceolata Unger] Dicotyledoneae fam., gen. et spec. indet. (aff. Myrica, Fagaceae, Lauraceae) Engelhardia vel Q. drymeja Unger [as Myrica kymeana (Unger) W. Berger] Eriolaena sp. Lauraceae vel Fagaceae [as “Laurus” princeps Heer] Monocotyledoneae fam., gen. et spec. indet. (aff. Cyperaceae) cf. Quercus drymeja Unger [as Quercus lonchitis Unger] Zelkova zelkovifolia (Unger) Bůžek, Kotlaba [as Z. praelonga (Unger) W. Berger] ■ M(o)udros (new records in bold) Pronephrium stiriacum (Unger) Erw. Knobloch et Kvaček [as Coniopteris styriaca Heer] Cedroxylon sp. Glyptostrobus europaeus (Brongniart) Unger Sequoia abietina (Brongniart) Erw. Knobloch Pinoxylon parenchymatosum Süss et Velitzelos Cornoxylon pappi W. Berger Daphnogene polymorpha (A. Braun) Ettingshausen [as Cinnamomum cf. scheuchzeri Heer] Daphnogene polymorpha (A. Braun) Ettingshausen [as Cinnamomum polymorphum (A. Braun) Kräusel et Weyland] Fagaceae vel Lauraceae [as Andromeda saportana Heer] Laurinoxylon ehrendorferi W. Berger palm roots, palm seeds, palm leaves Phragmites sp. Sabal sp. a lobed type of Quercus [as Quercus furuhjelmii Heer] in the Ashutas flora. Deciduous lobed species belonging to Quercus Group Quercus (white oaks) appear in the floras of the eastern Mediterranean region only in the Miocene (see Section 3.2.1). Contemporaneous and slightly younger plant assemblages of Central Europe, Central Paratethys, and Mediterranean Tethys with a markedly similar composition to the floras from the Evros region are known from the Rupelian Florenkomplex Flörsheim–Nerchau (Mai, 1995, p. 361) and the late Oligocene Florenkomplexes Eger–Hausham and Cadibona (Mai, 1995, p. 385, p. 423). Closely allied or identical species with those of Evros are, among others, Pronephrium stiriacum, Calocedrus suleticensis, Quasisequoia couttsiae, Platanus neptunii, Fagus castaneifolia, Comptonia difformis, Myrica longifolia, Ziziphus ziziphoides, Nyssa altenburgensis, and Alnus gaudinii (e.g. Mai and Walther, 1991; Mai, 1995). From Germany, Denk et al. (2012) reported a Rupelian palynoflora that contains Eotrigonobalanus and Fagus along with Alnus, Platanus, Nyssa, and Rhamnaceae. In addition, this study reported the oldest unambiguous remains of Quercus Group Ilex, an element that is absent from Oligocene sediments of the Evros region but is characteristic of the Neogene floras in Central and South Europe (including Greece). Overall, the early to late Oligocene floras of Evros and adjacent Thrace are markedly similar to coeval floras of the Central Paratethys and Mediterranean Tethys regions (e.g. Aix-en-Provence, Manosque). At the same time, many taxa are also found in the younger floras of Lesbos, Lemnos and Kimi in Greece, and other Mediterranean/South European floras of western Turkey, Serbia, Italy and France. Elements of the Paleogene European Eotrigonobalanus–laurel forests of the earlier parts of the Oligocene and the Eocene (Eotrigonobalanus, Quasisequoia) disappear in Greece after the Oligocene but persist in Central Europe until the early and late Miocene (Kvaček and Walther, 1989; Kunzmann, 1999). 3.1.1.6. Taxonomic and ecological notes Quasisequoia couttsiae — According to Kunzmann (1999), this species had a wide ecological amplitude. During the Paleogene it was a typical Table 6 Taxa recorded from the upper Miocene of Vegora (Map no. 18). Messinian, 7–6 Ma, of Vegora (Velitzelos and Gregor, 1985, 1990; Kvaček et al., 2002; Velitzelos and Denk, 2002) Osmunda parschlugiana (Unger) Andreánszky Ginkgo adiantoides (Unger) Heer Cedrus vivariensis Boulay Cryptomeria anglica Boulter Cupressus rhenana (Kilpper) Mai et Velitzelos Glyptostrobus europaeus (Brongniart) Unger Keteleeria hoehnei Kirchheimer Pinus hampeana (Unger) Heer emend. Mai Pinus salinarum (Partsch) Zablocki Pinus spp. (cones, leaves) Pinus vegorae Mai et Velitzelos Sequoia abietina (Brongniart) Erw. Knobloch Taxodium dubium (Sternberg) Heer Taiwania schaeferi Schloemer-Jaeger (only from Komnina) Acer aegopodifolium (Göppert) Baikovskaya Acer integrilobum Weber Acer limburgense C. Reid et E. Reid Acer pseudomonspessulanum Unger Acer pyrenaicum Rérolle Acer spp. (samaras) Acer subcampestre Göppert Acer tricuspidatum Bronn Alnus adscendens (Göppert) Zastawniak et Walther Alnus cecropiifolia (Ettingshausen) Berger Alnus cf. kefersteinii (Göppert) Unger Alnus ducalis (C.T. Gaudin) Erw. Knobloch Alnus gaudinii (Heer) Erw. Knobloch et Kvaček Alnus julianiformis (Sternberg) Kvaček et Holý Carpinus betulus L. fossilis In lignites Glyptostrobus europaeus (Brongniart) Unger (also at Komnina) Aldrovandia praevesiculosa Kirchheimer Bolboschoenus vegorae Velitzelos, Krach, H.-J. Gregor et Geissert Brasenia sp. Ceratophyllum sp. (also at Komnina) Carpinus grandis Unger Carpinus sp., group of C. tschonoskii Maximowicz sensu W. Berger Castanea sp. (cupule) Chamaerops humilis L. fossilis Craigia bronnii (Unger) Kvaček, Bůžek et Manchester Daphnogene pannonica Kvaček et Erw. Knobloch Dicotylophyllum sp. 1–6 Fagus gussonii Massalongo (foliage and cupules) Fraxinus sp. (fruits) Hedera multinervis Kolakovsky Laurophyllum pseudoprinceps Weyland et Kilpper Leguminosites sp. Platanus leucophylla (Unger) Erw. Knobloch Populus balsamoides Göppert Populus populina (Brongniart) Erw. Knobloch Populus sp. 1 Populus sp. 2 Pterocarya paradisiaca (Unger) Iljinskaya Quercus cerrisaecarpa Kolakovsky Quercus drymeja Unger Quercus gigas Göppert emend. Walther et Zastawniak Quercus kubinyii (Kováts ex Ettingshausen) Czeczott Quercus mediterranea Unger Quercus pseudocastanea Göppert emend. Walther et Zastawniak Quercus sosnowskyi Kolakovsky Quercus sp. (cupule) Sassafras ferrettianum Massalongo Ulmus plurinervia Unger Zelkova zelkovifolia (Unger) Bůžek et Kotlaba Cladium sp. Decodon globosus (E. Reid) Nikitin Potamogeton sp. Spirematospermum wetzleri (Heer) Chandler element of coal-swamps where it was later replaced by Taxodium and Glyptostrobus. In the Neogene, it was part of riparian vegetation along rivers and of lake shore communities. At the same time it formed part of warm temperate (subtropical) laurel forests. Fagus castaneifolia — The Paleogene to middle Miocene remains of Fagus of Central and western Eurasia are referred to as Fagus castaneifolia (Denk, 2004). In a narrow sense, the Greek representatives of this taxon could as well be called Fagus pristina. Since morphotypes typical of F. pristina are connected by morphoclines to conspicuously dentate forms, we prefer the name F. castaneifolia for this variable complex of leaf morphologies. Dicotylophyllum sp. cf. Quercus daphnes — Based on its oblong leaf shape, obtuse base, slightly pointed apex, and secondary venation, these leaf 69 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 7 (continued) Table 7 Taxa recorde from the upper Miocene of Prosilio and Lava (Map no. 20). Upper Miocene of Prosilio and Lava (Knobloch and Velitzelos, 1986b, 1987; Velitzelos and Gregor, 1985, 1986, 1990; Antoniadis and Rieber, 1997; Kvaček et al., 2002; new records in bold) Moss Osmunda parschlugiana (Unger) Andreánszky cf. Pteris oeningensis Unger Glyptostrobus europaeus (Brongniart) Unger Taxodium dubium (Sternberg) Heer Picea sp. (d) Pinus sp. Taxus sp. Acer decipiens A. Braun Acer integrilobum Weber Acer pyrenaicum Rérolle Acer tricuspidatum Bronn Actinidia faveolata C. Reid et E. Reid (d) Alnus ducalis (C.T. Gaudin) Erw. Knobloch Alnus gaudinii (Heer) Erw. Knobloch et Kvaček Betula cf. longisquamosa Mädler (fruit scales) Betula sp. Buxus sp. [as Dicotylophyllum sp. (? Buxus sp.)] Carex cf. flavaeformis Łańcucka-Środoniowa (d) Carpinus l and f Carpinus cf. betulus L. fossilis (d) Carpinus sp. Ceratophyllum vösendorfense W. Berger Craigia bronnii (Unger) Kvaček, Bůžek et Manchester Dulichium sp. (d) Engelhardia orsbergensis (P. Wessel et Weber) Jähnichen, Mai et Walter [as Palaeocarya orsbergensis (P. Wessel et Weber) Jähnichen, W.L. Friedrich et Takác] Fagales catkins (two types including cf. Betula longisquamosa Mädler) Fagus gussonii Massalongo (l and f) Fraxinus sp. (fruit) Hartziella miocenica Szafer (d) Hedera multinervis Kolakowsky Hippuris vulgaris L. (d) Lauraceae vel Fagaceae cf. Lychnis flos-cuculi L. Lycopus europaeus L. (d) Lysimachia nummularia L. vel vulgaris L. (d) Meliosma sp. (d) Menyanthes sp. (d) Nymphaeaceae Nuphar cf. luteum (L.) Smith Phragmites oeningensis A. Braun Platanus leucophylla (Unger) Erw. Knobloch Potamogeton corticosus Nikitin (d) Potamogeton dubnanensis Erw. Knobloch (d) Potamogeton kunovicensis Erw. Knobloch (d) Potamogeton piestanensis Erw. Knobloch (d) Potamogeton sp. Potentilla pliocenica E. Reid (d) Pterocarya paradisiaca (Unger) Iljinskaya Quercus sp. cupules Quercus drymeja Unger Quercus mediterranea Unger Quercus gigas Göppert emend. Walther et Zastawniak [as Quercus sp.] Quercus kubinyii (Kováts ex Ettingshausen) Czeczott [as Quercus sp.] Quercus sosnowskyi Kolakovsky [as Quercus sp.] Quercus pseudocastanea Göppert cf. Rosaceae Ranunculus sceleratoides Nikitin (d) Rubus laticostatus Kirchheimer (d) Rubus semirotundatus Łańcucka-Środoniowa (d) Rubus sp. (d) Salix cf. lavateri A. Braun sensu Hantke Salix sp. Sambucus lucida Dorofeev (d) Sassafras ferrettianum Massalongo Scirpus longispermus Dorofeev (d) Sparganium cf. neglectum Beedy (d) Spirematospermum wetzleri (Heer) Chandler (d) Stachys cf. sylvatica L. (d) Stratiotes intermedius (Hartz) Chandler Stratiotes kaltennordheimensis (Zenker) Keilhack Typha sp. (d) P P P P P P P P P P P L L L L L L L P P L L P L P P P P L L L L P P P Upper Miocene of Prosilio and Lava (Knobloch and Velitzelos, 1986b, 1987; Velitzelos and Gregor, 1985, 1986, 1990; Antoniadis and Rieber, 1997; Kvaček et al., 2002; new records in bold) Ulmus vel Carpinus sp. Viburnum sp. aff. dentatum L. Zelkova zelkovifolia (Unger) Bůžek, Kotlaba Indet. 1–4 P P P P P = taxon recorded from Prosilio, L = taxon recorded from Lava. Plant organs are leaves if not indicated otherwise. d = diaspore. remains resemble modern representatives of Quercus infrageneric group Lobatae (red oaks) typically forming part of riparian and swamp forest vegetation in eastern North America and of various plant communities on well-drained soils in Mexico (e.g. Quercus crassipes Bonpland, Quercus phellos L.). Butzmann et al. (2007) referred to these leaves as Apocynophyllum helveticum Heer. Sabal lamanonis — This palm is known from upper Eocene to middle Miocene sedimentary rock formations (Heer, 1855; Mai, 1995; Knobloch et al., 1996). It differs from Sabal major (Unger) Heer by the less prominent apical extension of the rachis. In the upper Oligocene of Aix-en-Provence it co-occurs with Phoenicites (Saporta, 1862). Sabal raphifolia — This species differs from Sabal lamanonis by the narrower leaves that depart from the rachis in a steep angle (Knobloch et al., 1996). 3.2. Early Miocene L 3.2.1. Greece mainland L 3.2.1.1. Grevena, southwestern West Macedonia (early to middle Miocene; Map 1, no. 6; Plate VII). The Grevena Basin is part of the Meso-HellenicBasin, which is an elongated depression of NW–SE direction along the axis of the Hellenides, extending from Albania to the Thessalic plain. The Meso-Hellenic-Basin is late Eocene to middle Miocene in age and is filled with molassic sediments (Brunn, 1956; Ferrière et al., 2004). The litho-stratigraphic sequence comprises four main formations according to Ferrière et al. (2004; corresponding to the divisions proposed by Brunn, 1956). (i) Krania–Rizoma Formation (Fm.), late Eocene, (ii) Eptachorion Fm., Eocene–Oligocene, (iii) Taliaros–Pentalofos Fm., late Oligocene to early Miocene, and (iv) the plant-bearing Tsotyli– Ondrias–Orlias Fm., early to middle Miocene. The Tsotyli–Ondrias– Orlias Fm. is composed of thick conglomerates alternating with sandstones and sandy marls. To the southwest of Vourias, the Grevena Basin is filled with sediments that are not younger than middle Miocene (see Electronic Supplement 1, Map ES 5). To the northeast, the Ptolemais Basin is filled with the younger plant-bearing sediments described below. Plant fossils from Grevena represent riparian stands and the vegetation of the well-drained hinterland (Table 2). Riparian elements are Pronephrium, Daphnogene (cinnamomifolia type), Myrica vel Apocynophyllum, Populus, Pterocarya, and Phoenicites. Some of these elements may also have been part of the surrounding forest vegetation that comprised deciduous lobed Quercus, Ulmus, Zelkova and others. The small flora of Grevena comprises a combination of plant taxa that is unusual among early and middle Miocene plant assemblages in Greece. Lobed oaks are not known elsewhere from floras older than late Miocene and only rarely co-occur with palms and Daphnogene, which, in turn, are not typical of floras younger than early Miocene. In contrast, lobed oaks and Daphnogene are among the most common elements in the late Miocene floras of Senigallia near Ancona (Massalongo and Scarabelli, 1859) and the Toscana (Berger, 1957); palms occur in the Messinian of Roddi and Palena (E. Martinetto in Kovar-Eder et al., 2006). Lobed oaks, Daphnogene, and palms are P P L L L L L P L P P L L L L P L P P P P P P P P P P P L L L L L L L P L L L L P P L (continued on next page) 70 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 8 Taxa recorded from the upper Miocene of Likoudi and Drymos (Map no. 21). Upper Miocene of Likoudi and Drymos (Velitzelos and Gregor, 1985, 1986, 1990; Knobloch and Velitzelos, 1986a, 1987; Mai and Velitzelos, 1992; Kvaček et al., 2002; Wojcicki and Velitzelos, 2007; new records in bold) Ginkgo adiantoides (Unger) Heer (l) Sequoia abietina (Brongniart) Erw. Knobloch Glyptostrobus europaeus (Brongniart) Unger Taiwania sp. [as Cryptomeria sp.] Tetraclinis salicornioides (Unger) Kvaček (axis leafy) Abies resinosa Mai (d) Cathaya bergeri (Kirchheimer) Schneider (d) Cathaya sp. [as Cathaya sp. vel.? Pseudotsuga sp.] (axis leafy) Cedrus vivariensis N. Boulay (d) Picea sp. (d) Pinus sp. (l, d) Acer cf. subcampestre Göppert Acer cf. decipiens A. Braun Acer integerrimum (Viviani) Massalongo Acer palaeosaccharinum Stur Acer tricuspidatum Bronn Alnus cecropiifolia (Ettingshausen) W. Berger Alnus ducalis (C.T. Gaudin) Erw. Knobloch Alnus julianiformis (Sternberg) Kvaček et Holý cf. Berberis sp. (l) Betula pseudolumnifera Givulescu [as Betula insignis C.T. Gaudin] Buxus sp. (l) [as Dicotylophyllum sp. (? Buxus sp.)] Carpinus cf. miocenica Tanai (d) Carpinus sp. (d) Cercis miochinensis Hu et Chaney (d) Corylus sp. (d) Dicotylophyllum div. gen. et. sp. indet. Egeria sp. Fagus gussonii Massalongo (l, d) Fraxinus sp. (d) Gymnocladocarpum velitzelosii H.J. Gregor (d) Laria rueminiana (Heer) G. Worobiec et Kvaček Lauraceae vel Fagaceae [as Laurophyllum princeps (Heer) Erw. Knobloch et Weyland] Liquidambar europaea A. Braun (l, d) cf. Matudaea menzelii Walther cf. Nerium sp. Ostrya atlantidis Unger (d) Ostrya licudensis Erw. Knobloch et Velitzelos Paliurus thurnanni Heer (d) Phragmites oeningensis A. Braun Platanus leucophylla (Unger) Erw. Knobloch Populus populina (Brongniart) Erw. Knobloch Populus sp. (bud scales) Pterocarya paradisiaca (Unger) Iljinskaya Quercus cf. drymeja Unger [very common] Quercus cf. mediterranea Unger [very rare] Quercus pseudocastanea Göppert [partly as Quercus dubia Erw. Knobloch et Velitzelos; rare] Quercus licudensis Knobloch et Velitzelos [locally abundant] Rosaceae (l) Salix aff. moravica Erw. Knobloch Salix massalongii Erw. Knobloch et Velitzelos Sapindus falcifolius A. Braun Sassafras ferrettianumMassalongo Sassafras cf. tenuilobatum Andreánszky Trapa kvacekii Wójcicki et D. Velitzelos (d) Ulmus sp. (d) Zelkova zelkovifolia (Unger) Bůžek et Kotlaba also co-occurring in the Messinian flora of Kodor (western Georgia; Kolakovsky, 1964). If the here described plant assemblage indeed is of early Miocene age, the presence of lobed deciduous oaks in Grevena represents the earliest record of this type of foliage in western Eurasia. Lobed oaks with unclear affinity (either Group Quercus, white oaks, or Group Lobatae, red oaks) are known from the Eocene of Ellesmere Island (McIver and Basinger, 1999); the oldest oaks belonging to Group Quercus from Eurasia are from the early Oligocene of Japan (Tanai and Uemura, 1994). Table 9 Taxa recorded from the upper Miocene of Corfu (Map no. 22). Corfu, Paghi, Messinian (Velitzelos and Gregor, 1990) Abies sp. Cupressaceae Pinus sp. Taxodium dubium (Sternberg) Heer Tetraclinis salicornioides (Unger) Kvaček [as Libocedrites salicornoides (Unger) Heer] Tsuga europaea (Menzel) Szafer Acer tricuspidatum Bronn Dicotylophyllum sp. Lauraceae Lauraceae vel Fagaceae [as Laurophyllum princeps (Heer) Knobloch et Weyland] Matudaea menzelii Walther Ostrya sp. Platanus academiae C.T. Gaudin Quercus mediterranea Unger Salix massalongii Erw. Knobloch et Velitzelos Zanthoxylum europaeum Unger 3.2.1.2. Euboea (Burdigalian) (Table 3, Plates VIII–X). Early Miocene plant remains from Euboea mainly originate from two areas, Aliveri (Map 1, no. 7) facing the South Euboean Gulf, and Kimi (Kymi; Map 1, no. 8) on the eastern side of the island. In addition, Velitzelos (1993) described a small flora from South Euboea at Nea Stira (Map 1, no. 10). The macroflora of Kimi has been subjected to palaeobotanical investigations since the middle 19th century (e.g. Unger, 1867). More recently, Velitzelos and Gregor (1982), Kvaček and Velitzelos (2000) and Kvaček and Erdei (2001) investigated selected taxa, and Velitzelos et al. (2002b) provided an updated list of taxa from Kimi. The carpoflora from Aliveri has comprehensively been studied by Gregor (Gregor, 1983; Velitzelos and Gregor, 1990) and the small leaf flora from Aliveri by Velitzelos et al. (1992). The Neogene deposits of Euboea are of continental origin. In the Aliveri–Kimi Basin, the lower unit, the Prinias Group, consists of finegrained lacustrine sediments with lignites; the younger (Tortonian) upper unit consists of coarse-grained fluviatile sediments (Riegel et al., 1989; Velitzelos, 2002; Velitzelos et al., 2002b). Plant remains in the Table 10 Taxa recorded from the upper Miocene of Strymon basin (Map nos. 23, 24). Kavala, Strymon Basin, Thrace, Pontian–Messinian (Georgiades-Dikeoulia and Velitzelos, 1983; Dermitzakis et al., 1985–1986) ■ Akropotamos unit as Sequoia abietina (Brongniart) Erw. Knobloch Acer sp. Alnus adscendens (Göppert) Zastawniak et Walther [as Betula macrophylla Heer] Ostrya nervosa Andreánszky Platanus leucophylla (Unger) Erw. Knobloch [as Platanus platanifolia (Ettingshausen) Erw. Knobloch] Populus balsamoides Göppert Populus sp. Quercus mediterranea Unger Quercus sp. Zelkova zelkovifolia (Unger) Bůžek et Kotlaba Iliokomi–Kormitsa, Strymon Basin, Thrace, Miocene (Velitzelos, 1993) Pronephrium stiriacum (Unger) Erw. Knobloch et Kvaček Glyptostrobus europaeus (Brongniart) Unger Pinus sp. Acer tricuspidatum Bronn Myrica lignitum Unger Platanus leucophylla (Unger) Erw. Knobloch Quercus neriifolia A. Braun Quercus kubinyii (Kováts ex Ettingshausen) Czeczott D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 11 Taxa recorded from the upper Miocene of the Platana Formation (Map nos. 25, 26). Platana Formation, Messinian (Kleinhölter, 1990, 1994a,b) Pronephrium stiriacum (Unger) Knobloch et Kvaček Pteris oenigensis Unger Cupressaceae [as Cupressus sempervirens L.] Glyptostrobus europaeus (Brongniart) Unger Pinus cf. palaeostrobus (Ettingshausen) Heer (5-needled fascicles) Pinus cf. saturni Unger (3-needled fascicles) Pinus sp. (cone) Sequoia abietina (Brongniart) Erw. Knobloch Taxodium sp. Tetraclinis salicornioides (Unger) Kvaček Acer integrilobum Weber Acer palaeosaccharinum Stur Acer sp. (d) Acer tricuspidatum Bronn Alnus cycladum Unger Apiaceae (d) Banisteriaecarpum giganeum (Göppert) Kräusel [as Acer giganteum Göppert] (d) Berchemia multinervis (A. Braun) Heer Betula sp. Carex sp. (d) Carpinus grandis Unger Cerastium sp. (d) Ceratophyllum vösendorfense W. Berger (d) Cladium mariscus (L.) Pohl (d) Cocculus sp. (d) Coriaria sp. (d) Craigia bronnii (Unger) Kvaček, Bůžek et Manchester (d) Daphnogene polymorpha (A. Braun) Ettingshausen Dombeyopsis lobata Unger Eriophorum angustifolium Honckeny (d) cf. Fabaceae [as Caesalpina townshendi Heer] Fabaceae [as Sophora europaea Unger] Fabaceae [as Cassia memnonia Unger] Fabaceae [as Gleditschia wesseli Weber] (d) Fagus sp. (d) Indet. dicot leaf [as Ilex sphenophylla Unger] Juglans acuminata A. Braun [partly as Juglans vetusta Heer] Juglans sp. (d) Lauraceae [as Laurophyllum princeps (Heer) Kräusel et Weyland] Lauraceae vel Fagaceae [as Laurus agathophyllum Unger] Lauraceae vel Fagaceae [as Laurus primigenia Heer] Lauraceae [as Persea speciosa Heer] Liquidambar europaea A. Braun Monocotyledonae sp. Myrica cf. longifolia Unger Myrica lignitum (Unger) Saporta Phragmites sp. Platanus academiae C.T. Gaudin Platanus sp. Poaceae Populus populina (Brongniart) Erw. Knobloch [partly as Populus tremula L.] Populus sp. (d) Potamogeton sp. Prunus sp. (d) Pterocarya paradisiaca (Unger) Iljinskaya Quercus drymeja Unger Quercus kubinyii (Kováts ex Ettingshausen) Czeczott Quercus mediterranea Unger Quercus montebambolina C.T. Gaudin Rosa sp. (d) Rubus fruticosus L. (d) Salix angusta A. Braun Salix lavateri A. Braun sensu Hantke [as Salix longa A. Braun] Salix sp. (d) Sambucus racemosa L. (d) Sapindus sp. Schoenoplectus mucronatus (L.) Palla (d) Sinarundinaria nitida (Mitford) Nakai (d) Ulmus carpinifolia f. minuta Göppert Ulmus longifolia Unger Ulmus plurinervia Unger Vitis sp. (d) (continued on next page) 71 Table 11 (continued) Platana Formation, Messinian (Kleinhölter, 1990, 1994a,b) Zannichellia palustris L.(d) Zelkova zelkovifolia (Unger) Bůžek et Kotlaba Lala, Pirgos Basin, Peloponnes (Velitzelos and Gregor, 1990, 1993–1995; Mai and Velitzelos, 2007) Pinus strozzii C.T. Gaudin (d) Anacardiaceae spec. nov. N Pleiogynium sp. nov. (d) Carya sp. (d) Cymodocea sp. (d) Toddalia sp. (d) southern part of the Aliveri–Kymi (Kimi) Basin are derived from the Marmarenia Fm. within the Prinias Group. The age of the plant-bearing deposits is well-constrained on the basis of small mammals (De Bruijn et al., 1980; Katsikatsos et al., 1981; Fortelius, 2013; 18–17 Ma, MN 4), sporomorph associations (Benda et al., 1977; Benda and de Bruijn, 1982; Benda et al., 1982), and the presence of mastixioid elements (Velitzelos et al., 2002b). Based on this evidence, a Burdigalian age is suggested for the plant fossils from Kimi and Aliveri. The most prominent difference with the late Oligocene floras of Thrace and the Burdigalian floras of Euboea is the great abundance of two sclerophyllous Quercus species (Quercus drymeja, Quercus mediterranea) in the early Miocene Kimi flora. These species characterized the well-drained hinterland vegetation. Both are belonging to Quercus Group Ilex (Denk et al., 2010) and are indicative of warm temperate (according to Köppen), fully humid (Cfa) or winter-dry climates receiving considerable monsoon rains (Cwa, Cwb). The modern species of Quercus Group Ilex comprise ca. 30 spp. In particular, the Himalayan and East Asian members of this group are ecologically markedly different from their modern Mediterranean relatives except for outposts of Q. ilex in beech-dominated forests of northern Turkey and northern Italy (Cfa). Most common riparian elements in the fossil assemblage of Kimi are Glyptostrobus, Alnus, Myrica spp., and Daphnogene polymorpha; the cycad “Encephalartos” (Plate VIII, 4) and Pinus probably also were part of light riparian forests. Well-drained forests on slopes surrounding the wetlands were dominated by sclerophyllous oaks on edaphically drier stands, with an admixture of Tetraclinis, Zelkova, Ziziphus, and Berberis. On deeper soils, Fagus, Tilia and Lauraceae/Fagaceae were forming dense forests. Mastixioideae are typical of Eocene to Miocene strata in Europe but are very rare in the Oligocene and Miocene of the Mediterranean. They are indicative of winter-mild and generally humid climates (Meller, 1998). Mastixicarpum cacaoides occurs in Kimi and in the Oligocene of Germany (Mai and Walther, 1978). Recently, another Mastixioideae endocarp has been described from the Oligocene of northwestern Italy (Martinetto, 2011). In contrast to the Greek material, the Italian species shows systematic affinities with North American species. This kind of biogeographic pattern has recently been shown for Mahonia (Güner and Denk, 2012), where European fossils either show North American or Eurasian systematic affinities. 3.2.2. Aegean Islands 3.2.2.1. Lesbos, North Aegean Sea (Aquitanian–Burdigalian) (Table 4; Plates XI–XIII; Map 1, no. 12). The main period of volcanic activity in Lesbos occurred between ca. 18.5 and 17 Ma. Prior to this, the Eressos Fm., dated at ca. 21.5 Ma, had been deposited. The formation of the famous petrified forests of Lesbos is connected to the Sigri pyroclastics, part of the Skoutaros Fm. (Zouros et al., 2007) overlaying the Eressos Fm. Radiometric dating of volcanic rocks and the presence 72 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 of Prodeinotherium bavaricum (v. Meyer, 1831) in silicified lacustrine marls just below the volcanic rocks suggest an age of 19–18 Ma (but certainly younger than 21.5 Ma) for the plant bearing sediments of Lesbos (Koufos et al., 2003). Recently, lacustrine deposits beneath the pyroclastic sequence containing the petrified forest of Lesbos have yielded micromammals along with lizard dentaries and crocodile teeth indicative of MN3/MN4 (Vasileiadou and Zouros, 2012). Palaeobotanical research has mainly concentrated on the petrified wood remains of Lesbos (Süss and Velitzelos, 1994a,b, 1997, 1998, 1999, 2000, 2001), and less so on leaf fossils of the litter horizon of the petrified forest (Velitzelos et al., 1981; Velitzelos and Zouros, 2000). The autochthonous nature of the petrified forests allows the reconstruction of a forest zonation. At the Petrified Forest Park, to the east of Sigri at ca. 250 m a.s.l. the plant assemblage is dominated by conifers of unclear affinities (cf. Table 4) and Taxodioxylon gypsaceum. The wood of T. gypsaceum has traditionally been compared with Sequoia, but closer similarity with the extinct genus Quasisequoia has been suggested as well (see discussion in Teodoridis and Sakala, 2008). Close to Sigri, at the present sea level, the forest is composed of conifers, Laurioxylon, and Palmoxylon (Zouros et al., 2007), corresponding to a lowland situation. Based on the leaf fossil record, the lowland and/or riparian elements were Daphnogene, Myrica, Populus spp., Rubus and palms (Phoenicites). Also the enigmatic plant Pungiphyllum (Plate XIII, 5, 6) appears to have been part of the lowland/riparian vegetation. Ginkgoxylon is a rare element in the wood record originating from various sites (Sigri, Megalonis[s]i) and may have been an accessory element in the lake shore vegetation of the lowlands. Another rare element in the wood samples, Tetraclinoxylon (Süss and Velitzelos, 1997) was part of the well-drained forests. The wood record of Glyptostroboxylon microtracheidale (Süss and Velitzelos, 1997) with botanical affinities to Cunninghamia along with the compression fossils of twigs assigned to Cunninghamia miocenica (Plate XI, 1–6) suggests the presence of this genus in Lesbos. According to Walther (1989), Cunninghamia miocenica had a stratigraphic range from Oligocene to Pliocene. In Central Europe, Cunninghamia either was a coal forming element or part of laurel–conifer forests. Furthermore, a number of taxa that are rare in the leaf record may have been elements of the well-drained hinterland. Among them are Carpinus, Engelhardia orsbergensis, aff. Cedrela, and Tilia (see Section 3.2.4). 3.2.2.2. Lemnos, North Aegean Sea (early Burdigalian; Table 5, Plate XIV). On Lemnos, sedimentary basement including molassic deposits is covered by volcanic rocks of early Miocene age. The volcanic rock units are subdivided into Katalako, Romanou, and Myrina Unit. Silicified and opalised plant fossils are mainly found in the Romanou Unit. Pyroclastic rocks of this unit have been radiometrically dated at 19.8 Ma, Burdigalian (Innocenti et al., 1984; Voudouris et al., 2007). The opaline horizon contains well-preserved plant fossils. Plant fossils from Moudros (Map 1, no. 14) were described by Berger (1953a) and new findings were briefly mentioned in Süss and Velitzelos (1993). In general, the plant assemblages are not rich in species. Pronephrium, Daphnogene, Myrica, palms and monocots reflect riparian communities, whereas Quercus drymeja and Zelkova represent species from well-drained areas. Berger (1953a) described Eriolaena from Kastron (Myrina, Map 1, no. 13). The Asian genus Eriolaena belongs to the Dombeyoideae within Malvaceae and morphologically is similar to fossil leaves included within Laria rueminiana. We tentatively agree with Berger's determination for the fossil from Lemnos and keep the name Eriolaena. 3.2.3. Palaeoecology and palaeogeography The Aquitanian to Burdigalian floras of Greece were deposited in a period of warm global climate not dramatically cooler than during the Late Oligocene Warming (compare Section 3.1.1.5; Zachos et al., 2001). Continental collision between the Arabian and the Anatolian plates caused a relatively more continental climate in the Eastern Mediterranean region (Rögl, 1998). At the same time, a temporary migration route between Africa and Eurasia came into existence. The primitive deinothere Prodeinotherium bavaricum, a forest dweller, from Lesbos provides further evidence for this connection (Koufos et al., 2003). The presence of Deinotheriidae in Lesbos is consistent with the forest vegetation inferred from the fossil plant assemblages. Forest and lake shore or wetland habitats are also suggested by micromammals. The glirids of Lesbos were probably living on trees in forests, whereas Eumyarion is associated with wet forests or reed-marshes (Vasileiadou and Zouros, 2012). The rich fauna of Aliveri (MN4; Fortelius, 2013) comprises a cat-like mustelid and a plant-eating viverrid, along with several insectivores indicative of humid biotopes (De Bruijn et al., 1996) and rodents with ecological affinities to forests and woodlands. Early Miocene fossil assemblages of Greece have numerous similarities with contemporaneous and younger (middle Miocene) floras of Turkey. The cycad foliage from Kimi, “Encephalartos” is probably conspecific with the early middle Miocene Pseudodioon from Soma (Erdei et al., 2010). In Kimi, cycad foliage is extremely rare, whereas it is moderately abundant in Soma (Denk et al., 2014). In Soma the marls containing cycad foliage are deposited directly above the lignite horizon and are characterized by riparian elements. The cycad from Kimi is from the historical collection that was gathered when the coal was exploited by underground mining. At present, no sediments close to the lignite horizon are exposed in Kimi and this may explain why more recent collections do not contain cycad foliage. The same type of Tilia bracts and fruits occur in Kimi and the early Miocene flora of Güvem, northwestern Central Anatolia (Denk and Güner; unpublished data). Also Fagus appears to have occupied the same ecological niche in Güvem and Kimi and the same is true for Quercus drymeja and Quercus mediterranea. Berberidaceae from Kimi and from Turkey are related to modern East Asian species (Berberis, Kvaček and Erdei, 2001; Mahonia, Güner and Denk, 2012) growing in humid warm temperate forests. Overall, the floras of the Kimi–Aliveri Basin show strong biogeographic affinities with early and middle Miocene floras of the Mediterranean region and the Balkans, all of which share a characteristic set of riparian and hinterland vegetation elements (Glyptostrobus, Daphnogene, Myrica, Alnus gaudinii, Fagus castaneifolia, Quercus drymeja, Quercus mediterranea). Many taxa are shared with the Burdigalian Güvem flora of Anatolia (Paicheler and Blanc, 1981; Denk and Güner, unpublished data), among them Calocedrus, Fagus castaneifolia, and Tilia. Tilia is also shared with the flora of Lesbos (see Section 3.2.2.1). Further, close similarities are with the early Miocene floras of Bosnia (Kvaček et al., 1993; F. castaneifolia, Q. drymeja, Q. mediterranea, Laurophyllum, A. gaudinii, Myrica, Acer tricuspidatum) and to a lesser degree with Montenegro (Đorđević-Milutinović and Ćulafić, 2010; F. castaneifolia, A. gaudinii, Q. mediterranea). The early Miocene floras of Montenegro share Cunninghamia and Nyssa with Lesbos. The plant assemblages from Grevena (West Macedonia) and Lesbos and Lemnos (Aegean) are possibly older than the ones from Aliveri and Kimi (Euboea). Both Grevena and Lesbos/Lemnos lack Fagus and members of Quercus Group Ilex. Grevena is the only early Miocene locality in western Eurasia that yields lobed oaks probably belonging to Quercus Group Quercus (white oaks). Lesbos and Lemnos are further characterized by the presence of palms. Notes to Table 12: a Probably Carpinus pyramidalis (Göppert) Heer, 1859 [= Ulmus pyramidalis Göppert], a leaf taxon. In contrast, C. pyramidalis C.T. Gaudin 1858 is a fruit taxon. b Mädler in Besenecker (1973). c Dermitzakis and Velitzelos (1985). 73 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 12 Taxa recorded from the middle to upper Miocene of Chios (Map nos. 15 to 17). Miocene layers of southeastern Chios ■ Thymiana layers, 17–15.2 Ma (Fortelius, 2013) Potamogeton sp. seeds Fragmented plant material, organic preservation (Besenecker, 1973) ■ Zyfia layers, “Badenian”, early Langhian (Mädler in Besenecker, 1973) Current study Mädler in Besenecker, 1973 (no. of specimens) Abies sp. Acer decipiens A. Braun Dicotylophyllum sp. cf. Betula sp. Daphnogene polymorpha (A. Braun) Ettingshausen cf. Corylus Ericaceae Fagus sp. Fagus sp. Lauraceae vel Fagaceae Populus sp. Potamogeton sp. cf. Salix sp. ? Abies sp. (2×) Acer cf. monspessulanum vel creticum (3×) ? Andromeda sp. (1×) ? Betula sp. (1×) Cinnamomum sp. (11×) ? Corylus sp. fruits (4×) Ericaceae small leaf (2×) Fagus cf. ferruginea Aiton (1×) Fagus sp. (3×) ? Laurus sp. (7×) Populus sp. (8×) Potamogeton sp. small leaf (1×) ? Salix sp. (1×) ■ Keramaria layers, “Sarmatian”, Serravallian (Besenecker, 1973) – – ■ Nenita layers, Serravallian to Tortonian (Stur in Teller, 1880; Mädler in Besenecker, 1973; Dermitzakis and Velitzelos, 1985) Locality “Kap” Nenita (Stur in Teller, 1880) Current study Previous identification Acer sp. Carpinus cf. grandis Unger Ulmus vel Carpinus sp. Fagus castaneifolia Unger Podocarpium podocarpum (A. Braun) Herendeen cf. Parrotia pristina Ettingshausen Populus balsamoides Göppert Salix varians Göppert Acer sp. (samara) Carpinus cf. grandis Unger Carpinus cf. pyramidalis Göpperta Fagus sp. Podogonium lyellianum Heer Parrotia pristina Ettingshausen sp. Populus sp. Salix varians Göppert Kato Komi [Komi] (new records in bold) Current study cf. Asplenium sp. Osmunda parschlugiana Unger Acer cf. integrilobum Weber Acer tricuspidatum Bronn Alnus cycladum Unger Alnus gaudinii (Heer) Erw. Knobloch et Kvaček Alnus julianiformis (Sternberg) Kvaček et Holý cf. Buxus sp. ? Carpinus grandis Unger Carpinus suborientalis Saporta Carpinus tschonoskii Maximowicz group sensu W. Berger (d) aff. Cladium mariscus (L.) Pohl cf. Corylus sp. (fruit) cf. Crataegus sp. Daphnogene polymorpha (A. Braun) Ettingshausen Dicotylophyllum sp. Dicotylophyllum sp. 1 (cf. Populus) Dicotylophyllum sp. 2 (small, entire margined leaf) Fabaceae 3 leaflet types Fagus sp. Fagaceae vel Lauraceae Indet. diverse leaf types (Fabaceae etc.) aff. Pistacia miocenica Saporta Juglandaceae div. spp. Laurophyllum sp. Myrica lignitum Unger Platanus leucophylla (Unger) Erw. Knobloch Podocarpium podocarpum (A. Braun) Herendeen Populus balsamoides Göppert Populus sp. 2 (aff. populina) Potamogeton sp. cf. Quercus drymeja Unger Quercus mediterranea Unger Rhizocaulon zenetti nomen nudum H.-J. Gregor aff. Salix sp. Ulmus sp. cf. Typha sp. Zelkova zelkovifolia (Unger) Bůžek et Kotlaba Previous identification cf. Ceterarch sp.b Osmunda heeri C.T. Gaudin Acer monspessulanum L. Acer tricuspidatum Bronn Alnus cycladum Ungerc – – cf. Buxus sp.b cf. Betula sp.b Carpinus grandis Unger Carpinus suborientalis Saporta – Cladium mariscus (L.) Pohl cf. Corylus sp.b cf. Crataegus sp.b Cinnamomum polymorphum Heer cf. Andromeda sp.b – – Fabaceaeb fruits and leaflets Fagus attenuata Göppert Quercus apocynophyllum Ettingshausen p.p. Pistacia lentiscus L.c Pistacia lentiscus L.c – Laurus sp.b Myrica lignitum Unger Platanus aceroides Göppert – Populus balsamoides Göppert – Potamogeton sp. leaves and fruits – Quercus mediterranea Unger – Salix sp.b – Typha sp.b – 74 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 13 Taxa recorded from the upper Miocene of Crete (Map nos. 29 to 31). Tortonian to Messinian of Crete ■ Makrilia, southwestern Crete, middle Tortonian, 8.6–7.7 Ma (Sachse and Mohr, 1996; Sachse, 1997) Equisetum sp. (m) Engelhardia orsbergensis (P. Wessel et Weber) Jähnichen, Mai et Walther cf. Abies sp. (p) Ericaceae (p) Cathaya sp. (p; possibly a cone scale) Fabaceae 9 leaf types Cedrus sp. (p) Fagus gussonii Massalongo (m, p) R Picea sp. (p) Fraxinus sp. (m) Pinus cf. hepios (Unger) Heer Hedera (p) Pinus cf. hampeana (Unger) Heer Ilex sp. (p) Taxodium/Glyptostrobus (p) Juglans (p) Taxodium dubium (Sternberg) Heer Juglans vel Carya (m) Tetraclinis salicornioides (Unger) Laurophyllum spp. (m) Kvaček (m, p) Tsuga igniculus (Potonié) Lonicera sp. (p) Frederiksen (p) Moraceae (p) Acer integerrimum (Viviani) Myrica lignitum (Unger) Massalongo (plus p) R Saporta (m, p) Acer decipiens A. Braun (plus p) R Myristicaceae (p) Alnus sp. (p) Nyssa sp. (p) cf. Ampelopsis vel Vitis cf. Ruppia (m) Araliaceae (p) Oleaceae (p) Antholithes styriacus Kovar-Eder et Kvaček R Phillyrea sp. (p) cf. Berberis R Podocarpium podocarpum (A. Braun) Herendeen (m, p) Populus sp. (m) Buxus cf. egeriana Kvaček, Bůžek et Holý Buxus cf. pliocenica Saporta Pterocarya (p) et Marion Buxus sp. (p) Q. mediterranea Unger (m, p) Carpinus sp. (m, p) cf. Quercus rhenana (Kräusel et Weyland) Erw. Knobloch et Kvaček Carpinus type orientalis (m) Quercus sp. (acorns) Carya (p) Rutaceae (p) Celtis type (p) Sabal sp. Cyrillaceae (p) Salix sp. Celastraceae (p) Sambucus sp. (p) Cistaceae (p) Sapotaceae (p) Daphnogene polymorpha Smilax cf. petiolata (A. Braun) Ettingshausen (Weber) Weyland (two fragments) Symplocos cf. minutula (Sternberg) Kirchheimer (m, p) Engelhardia type (p) Tilia (p,?m) Engelhardia macroptera cf. Toddalia (m) (Brongniart) Unger (m) [as cf. Palaeocarya macroptera Ulmus plurinervia Unger (m, p) (Brongnart) Jähnichen, W.L. Friedrich et Takác] Zelkova zelkovifolia (Unger) Bůžek et Kotlaba (m, p) ■ Pitsidia, southern Crete, Tortonian, N10.5 Ma (Zidianakis et al., 2010) Polypodiopsida Equisetum sp. Pinus sp. (leaves in fascicles of three) Pinus sp. (seeds) Taxodium sp. Cupressaceae Daphnogene polymorpha (A. Braun) Ettingshausen Acer decipiens and/or integrilobum Weber [as Acer pseudomonspessulanum Unger] Buxus pliocenica Saporta et Marion Carya minor Saporta et Marion Comptonia difformis (Sternberg) E.W. Berry Fabaceae gen. et spec. indet. Fagus gussonii Massalongo Liquidambar europaea A. Braun (l and d) Myrica lignitum Unger Populus populina (Brongniart) Erw. Knobloch vel Platanus leucophylla (Unger) Erw. Knobloch [as Populus crenata Unger] Poaceae vel Cyperaceae Podocarpium podocarpum (A. Braun) Herendeen Quercus?kubinyii (Kováts ex Ettingshausen) Czeczott Quercus mediterranea Unger (incl. Q. “drymeja” Unger) Table 13 (continued) ■ Pitsidia, southern Crete, Tortonian, N10.5 Ma (Zidianakis et al., 2010) Quercus roburoides C.T. Gaudin Salix sp. ?Zelkova zelkovifolia (Unger) Bůžek et Kotlaba ■ Vrysses, northwestern Crete, late Tortonian-early Messinian (Zidianakis et al., 2007) Pinus sp. (leaves in fascicles of two) Tetraclinis sp. Daphnogene polymorpha (A. Braun) Ettingshausen cf. Parrotia pristina (Ettingshausen) Stur cf. Juglans acuminata A. Braun Quercus mediterranea Unger cf. Quercus sp. aff. Q. drymeja Unger cf. Salix sp. as Populus tremula L. fossilis Buxus pliocenica Saporta et Marion Rosaceae Fabaceae 2 leaf/leaflet types Acer decipiens A. Braun [as A. pseudomonspessulanum Unger] Acer cf. integerrimum (Viviani) Massalongo [as Acer sp.] cf. Ziziphus ziziphoides (Unger) Weyland Poaceae vel Cyperaceae Hedera multinervis Kolakovsky [as Dicotylophyllum sp. 1] Dicotylophyllum sp. 2 to sp. 12 Dicotylophyllum [as Ulmaceae?] m = macrofossil, R = revised; p = pollen, several tropical genera reported by Sachse (1997) would need to be confirmed by SEM; they are not listed here (see text for details). New records in bold. Table 14 Taxa recorded from the upper Miocene of Samos (Map no. 32). Samos, early Tortonian (Ioakim and Solounias, 1985) Spores, pollen Polypodiopsida (ind.) Pinus Diploxylon (ind.) Pinus Haploxylon (ind.) Sciadopitys (mes.) Sequoia (mes.) Taxodium (rip.) Tsuga (mes.) Alnus (rip.) Amaranthaceae– Chenopodiaceae Aquifoliaceae (mes.) Araliaceae vel Cornaceae Asteraceae (ind.) Betula (mes.) Carya (ind.) Castanea type (mes.) Cyrillaceae (ind.) Ericaceae (ind.) Juglans (rip.) Eucommia (mes.) Nymphaeaceae Nyssaceae (rip.) Palmae (rip.) Platanaceae (rip.) Poaceae (ind.) Quercus (ind.) cf. Quercus (ind.) Salicaceae (rip.) Typhaceae (rip.) Ulmus/Zelkova (ind.) Samos, Tortonian and Messinian localities (Ioakim and Koufos, 2009) Spores, pollen Ephedra (ind.) Abies (mes.) Cathaya (mes.) Cedrus (mes.) Cupressaceae (ind.) Picea (mes.) Pinaceae (ind.) Pinus (ind.) Pinus haplostele-type (ind.) Sequoia type (mes.) Taxodium type (rip.) Tsuga (mes.) Acer (ind.) Alnus (rip.) Araliaceae (mes.) Armeria (ind.) Artemisia (ind.) Betula (mes.) Buxus (mes.) Carpinus (mes.) Carya (ind.) Caryophyllaceae (ind.) Castanea (mes.) Celtis (mes.) Chenopodiaceae– Amaranthaceae Cichorioideae (ind.) Cyperaceae (ind.) Cyrillacea–Clethraceae (ind.) Engelhardia (mes.) Ericaceae (ind.) Euphorbiaceae (ind.) Fagus (mes.) Fraxinus (rip.) Hamamelidaceae (mes.) Juglandaceae (ind.) Juglans (rip.) Liliaceae (ind.) Liquidambar (rip.) Lonicera (ind.) Loranthaceae (ind.) Mimosaceae (ind.) Myrica (rip.) Nymphaeaceae (rip.) Nyssa (rip.) Olea (mes.) Osmunda (rip.) Ostrya (mes.) Palmae (rip.) Parrotia (mes.) Plantago (ind.) Platanus (rip.) Platycarya (rip.) Polypodiaceae (ind.) Pterocarya (rip.) Quercus (ind.) Q. ilex type (mes.) Ranunculaceae (ind.) Rubiaceae (ind.) Rumex (ind.) Salix (rip.) Symplocos (mes.) Tilia (mes.) Typha (rip.) Ulmus (ind.) Vitis (ind.) (ind.) = ecologically indifferent, (rip.) = riparian/swamp forest element, (mes.) = mesic well-drained forest element. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 15 Taxa recorded from the Pliocene of Ptolemaida (Map no. 34). Lower Pliocene of Ptolemaida, West Macedonia (Anastopoulos and Koukouzas, 1972; Velitzelos and Gregor, 1985, 1990; fruits and seeds) ■ Kardia–Karyochori–Southern Field Mine Aldrovandia praevesiculosa Kirchheimer Ampelopsis sp. Ampelopsis ludwigii (A. Braun) Dorofeev [as Vitis ludwigii] Brasenia sp. Carex flagellata C. Reid et E. Reid Cladium sp. Cornus sp. Euryale sp. Hartziella rosenkjaeri (Hartz) Szafer Hippuris sp. Hypericum sp. Isoetes sp. Lycopus sp. Menyanthes sp. Myriophyllum sp. Oenanthe aquatica (L.) Poiret Potamogeton sp. Ranunculus sp. (incl. subgen. Batrachium) Rubus sp. Salvinia cf. natans (L.) Allioni Sambucus sp. Scirpus sp. Stratiotes cf. intermedius (Hartz) Chandler Trapa sp. Vitis teutonica A. Braun ■ Anargyri open pit Stratiotes sp. ■ Komanos open pit Cupressaceae Taxodium sp. Acer sp. Aldrovandia praevesiculosa Kirchheimer Alnus sp. Brasenia sp. Ceratophyllum sp. Fagus sp. [as Fagus attenuata Göppert] Hamamelidaceae Liquidambar sp. Nuphar sp. Prunoidea Quercus sp. Sapium sp. Sinomenium cantalense (E. Reid) Dorofeev Spirematospermum wetzleri (Heer) Chandler Stratiotes cf. kaltennordheimensis (Zenker) Keilhack Stratiotes sp. Stratiotes tuberculatus E. Reid Trichosanthes fragilis E. Reid Vitis sp. Zanthoxylum sp. ■ Komanos open pit, coal and overlying marls (Weyland and Pflug, 1957; Weyland et al., 1960) Spores and pollen Sphagnum Lycopodium Gleicheniaceae Osmunda Polypodiaceae div. Cycadinae? Ginkgo? Abies Cedrus Cryptomeria Cupressaceae Glyptostrobus Larix Picea Pinus Pseudotsuga Sciadopitys Sequoia Taxaceae? Taxodium Tsuga Aceraceae? Alismatales [as Helobiae] Alnus Amaryllidaceae Araceae? Araliaceae (Hedera and others) Asteraceae Betula Buxus Carpinus Carya Castanea Chenopodiaceae Cornaceae? Corylus Cyperaceae Cyrillaceae Ericaceae Fagus Fraxinus? Ilex Iridaceae Liquidambar Myrica Myrtaceae? Nymphaeaceae Nyssa Ostrya Palmae? Parthenocissus Phellodendron Platanaceae? Poaceae Pterocarya Quercus Rhus Salix Sapotaceae Smilax Sparganiaceae vel Typhaceae Symplocaceae Tilia Ulmus Zelkova? In early Miocene floras of France and Spain, Fagus is absent and Quercus drymeja and Quercus mediterranea do not play significant roles (Mai, 1995; Barrón and Diéguez, 2001; Barrón et al., 2006 [pollen]). Among middle Miocene floras, similarities are with the floras of Soma (western Anatolia; Mädler and Steffens, 1979; Gemici et al., 75 Table 16 Taxa recorded from the Pliocene of Atalanti (Map no. 35). Atalanti, Zeli, Pliocene (this study) Pinaceae needle leaves Pinus aff. brutia Tenore (d) Pinus (2-leafed fascicle) Pinus (4-leafed fascicle) Pinus (5-leafed fascicle) Tetraclinis sp. Acer subcampestre Göppert Alnus julianiformis (Sternberg) Kvaček Alnus kefersteinii (Göppert) Unger (d) Cf. Betula pseudolumnifera Givulescu Carpinus grandis Unger Cedrela vel Juglans Dicotylophyllum sp. 1 Dicotylophyllum sp. 2 Dicotylophyllum sp. 3 Fagus aff. haidingeri Kováts Cf. Juglandaceae Platanus academiae C.T. Gaudin Quercus drymeja Unger Quercus gigas Göppert emend. Walther et Zastawniak Quercus pseudocastanea Göppert emend. Walther et Zastawniak Quercus aff. cerris L. Quercus aff. castaneifolia C.A. Meyer Quercus kubinyii (Kováts ex Ettingshausen) Czeczott Quercus sp. (cupule) Rosaceae gen. et spec. indet. Cf. Sapindus falcifolius A. Braun Sorbus [vel Zelkova] Ulmus cf. braunii Heer Ulmus sp. (d) 1991; Erdei et al., 2010; Denk and Güner, unpublished data). Taxa shared between Kimi and Soma are “Encephalartos” (possibly conspecific with Pseudodioon akyoli Erdei et al., Erdei et al., 2010), Fagus castaneifolia, Berberis kymeana plus the “regular” set of taxa mentioned above. In a wider European context, a number of early and middle Miocene floras share similarities with the Greek floras. The laurophyllous flora from Ipolytarnóc, Hungary (Hably, 1983; Florenkomplex Ipolytarnóc– Luzern according to Mai, 1995) contains Pronephrium, Daphnogene, Laurophyllum, Pungiphyllum, Smilax, Sabal and other palms and hence is similar to the floras of Lesbos and Lemnos, but also to the Oligocene flora of Evros (Platanus neptunii). The early Miocene flora of Leoben (Ettingshausen, 1888) shares taxa both with Euboea and Lesbos/Lemnos Table 17 Taxa recorded from the Pliocene of Skoura (Map no. 37). Pliocene of Skoura near Sparti (Velitzelos and Knobloch, 1986; Knobloch and Velitzelos, 1987; Velitzelos and Gregor, 1990; Kleinhölter, 1994a, 1994b; new records in bold) Osmunda parschlugiana (Unger) Andreánszky Pteridium aff. aquilinum (L.) Kuhn fossilis Glyptostrobus europaeus (Brongniart) Unger Pinus div. spp. (3 types of needles) Sequoia sp. Alnus ducalis (C.T. Gaudin) Erw. Knobloch Alnus sp. Dicotylophyllum spp. Fagus sp.a Platanus academiae C.T. Gaudin Populus sp. Quercus cf. mediterranea Unger Quercus pseudocastanea Göppert Quercus roburoides C.T. Gaudin Quercus div. spp. indet. Quercus aff. Q. infectoria Olivier Quercus aff. Q. infectoria subsp. veneris (A. Kerner) Meikle Salix linearifolia Göppert Ulmus plurinervia Unger a No Fagus was encountered in our material. 76 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 18 Taxa recorded of Kythira (Map no. 38). Kythira, Agios Mamas Basin, Pliocene Goldacker et al. (1985) Ranunculus subgen. Batrachium sp. (aquatic) Carpolithus sp. Cladium oligovasculare Mai (wetland) Cyperaceae gen. et spec. indet. Hypericum sp. Polygonum sp. Potamogeton kunovicensis Erw. Knobloch (aquatic) Potamogeton piestanensis Erw. Knobloch (aquatic) Scirpus pliocaenicus Szafer (wetland) (Tetraclinis, Quasiseqoia, Fraxinus, Myrica, Fagus, Tilia, and Pungiphyllum). In the middle Miocene Parschlug flora (Kovar-Eder et al., 2004), Glyptostrobus, Myrica, rare Daphnogene, Alnus gaudinii, rare Fagus, Quercus drymeja, Quercus mediterranea, “Ilex” cyclophylla (as Mahonia [?] aspera) and others indicate similar vegetation types as in Kimi. Overall, fossil plant assemblages deposited in coastal areas (Lesbos, Lemnos, Ipolytarnóc, Luzern) may have originated from warmer environments lacking both Fagus and Quercus drymeja and Quercus mediterranea, while intramontane basins (Kimi, Güvem, Leoben, Parschlug, Lavanttal) favored the presence of these elements (cf. Mai, 1995). 3.2.4. Taxonomic notes Engelhardia [Palaeocarya] orsbergensis — According to Jähnichen et al. (1977), foliage of Engelhardia orsbergensis is intermediate between the East Asian (Alfaropsis roxburghiana [Wallich] Iljinskaya, as “Engelhardia roxburghiana”) and Central American members (Oreomunnea mexicana [Standley] J.F. Leroy, as “Engelhardia [Oreomunnea] mexicana”) of Table 19 Taxa recorded from the Pliocene of Patra (Map no. 39). Late Pliocene of the grabens of Patra, Rion and Corinth Symeonidis et al. (1987), Velitzelos and Gregor (1990), Kleinhölter (1995a,b) Equisetum sp. Pteris sp. Pinus sp. (needles) Acer cf. opalus Miller Acer sp. (samaras) Aesculus cf. hippocastanum L. Alnus kefersteinii (Göppert) Unger Alnus sp. Buxus pliocaenica Saporta et Marion [as Buxus sempervirens L.] Carpinus sp. Carya sp. (Symeonidis et al., 1987) Craigia bronnii (Unger) Kvaček, Bůžek et Manchester Fabaceae [as Cassia sp.] Fraxinus sp. (fruit) Fraxinus ungeri (C.T. Gaudin) Erw. Knobloch et Kvaček Juglans sp. (Symeonidis et al., 1987) Lauraceae vel Fagaceae [as Laurus primigenia Unger] Leguminocarpum sp. (fruits) Liquidambar europaea A. Braun (leaves, infructescences) Monocotyledonae gen. et sp. indet. Nuphar sp. (Velitzelos and Gregor, 1990) Phragmites sp. Platanus academiae C.T. Gaudin Platanus leucophylla (Unger) Erw. Knobloch Populus populina (Brongniart) Erw. Knobloch [as Populus tremula L.] Populus sp. Quercus roburoides C.T. Gaudin Quercus sp. Quercus sp. (cupules) Salix sp. Ulmus plurinervia Unger Zelkova zelkovifolia (Unger) Bůžek, Kotlaba Taxa without reference were desribed by Kleinhölter (1995a,b). subfamily Engelhardioideae. Jähnichen et al. (1984) associated the foliage with the fruits of Palaeocarya macroptera (Brongniart) Jähnichen et al., which are intermediate between the East Asian Alfaropsis– Engelhardia and the Central American Alfaroa–Oreomunnea. Manchester (1987), therefore, used the name Oreoroa orsbergensis (P. Wessel et Weber) Dilcher et Manchester to emphasize the intermediary nature of this fossil leaf taxon. In contrast, Jähnichen et al. (1984) suggested including the leaves within the genus Palaeocarya. Hence, E. (Oreoroa/ Palaeocarya) orsbergensis would be another taxon with North American–East Asian biogeographic affinities. In the light of modern systematics, using a narrow concept of Engelhardia, the generic affiliation of E. orsbergensis needs to be reconsidered. Quercus drymeja, Quercus mediterranea — Based on leaf morphology and associated pollen, Quercus drymeja and Quercus mediterranea represent fossil members of the sclerophyllous Quercus Group Ilex (Denk and Grimm, 2009a, 2010; Denk et al., 2010; syn. Quercus subgenus Heterobalanus according to Menitsky, 1984, 2005). Today, three Mediterranean species belong to Group Ilex, of which two (Quercus aucheri Jaubert et Spach, Quercus coccifera L.) are restricted to summer-dry climates, whereas the third species, Q. ilex L. occurs both in summerdry and fully humid climates. All other species of Quercus Group Ilex occur on the southern foothills of the Himalayas to East Asia (often as dominant elements) in fully humid to winter-dry, monsoonal climates. While morphologies as in Q. mediterranea are found both in the Mediterranean and Himalayan–East Asian species, nearly identical morphologies with Q. drymeja are exclusively found in Himalayan–East Asian species (Menitsky, 1984, 2005). Hence, sclerophylly of Quercus Group Ilex oaks cannot be taken as indicator of Mediterranean (Csa) climate or Mediterranean sclerophyllous forest (e.g. Axelrod, 1975; Palamarev, 1989; Mai, 1995). Tilia knoblochii — Tilia is found in Kimi and Lesbos. For fruits connected to bracts from Kimi, Velitzelos et al. (2005) established the name Tilia knoblochii (Plate X, 1). Foliage of Tilia is recorded from Lesbos (Plate XIII, 3). Foliage, bracts, and fruits consistent with the Greek fossils are also present in the early Miocene flora of Güvem, Anatolia (Denk and Güner, unpublished data). Furthermore, Tilia irtyschensis (Shaparenko) Grubov from the late Oligocene Ashutas flora from Kazakhstan (Krishtofovich et al., 1956) contains bracts with the same type of attachment level of peduncle to the bract (corresponding to “Type C” in Manchester, 1994). The bracts co-occur with leaves that were given the same name as the bracts. Further examination is needed to clarify, whether the name T. knoblochii should be emended to accommodate reproductive organs and foliage, or whether the Greek and Turkish fossils should be included within T. irtyschensis. 3.3. Middle and late Miocene 3.3.1. Greece mainland 3.3.1.1. Vegora, northeastern West Macedonia (Messinian) (Table 6, Plate XV, Map 1, no. 18; including Komnina, Map 1, no. 19). The Vegora section comprises lignites that are overlain by bluish and sandy marls which contain the plant macrofossils. A tephra layer in the upper part of the bluish marls has been dated at ca. 6 Ma. The flora of Vegora has been studied for almost five decades by Evangelos Velitzelos and co-workers resulting in a monograph (Kvaček et al., 2002). In contrast to most other Cenozoic floras of Greece, plant remains of Vegora commonly have intact cuticles that are occasionally excellently preserved (Ginkgo; Denk and Velitzelos, 2002). The rich flora contains elements indicative of swamp and riparian forests (Glyptostrobus, Taxodium, Betulaceae, Salicaceae, Sassafras) and well-drained forests dominated by Fagus and various species of Quercus (Groups Quercus, Cerris, and Ilex). In contrast to plant assemblages from older strata, Myrica and Daphnogene polymorpha were absent in the swamp forests. Mesic forests of the hinterland and surrounding the palaeo-lake were dominated by Fagus with an admixture of Acer spp. and Quercus spp. (Quercus kubinyii, Quercus 77 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 20 Taxa recorded from the Pliocene of Makrision (Map no. 40) and Pleistocene of Choremis (Map no. 42). Megalopolis, Makrision, upper Pliocene (Velitzelos, 1993) Table 20 (continued) Megalopolis, Choremis, lower Pleistocene (Mädler, 1971; Velitzelos and Gregor, 1985; Nickel et al., 1996) Ranuncuclus aquatilis L. Ranunculus sp. (subgen. Batrachium) Ranuculus spp. Rhynchospora cf. alba (L.) Vahl Rubus spp. Rumex spp. Salvinia cf. natans (L.) Allioni Sambucus ebulus L. Sambucus racemosa L. Schoenoplectus lacustris (L.) Palla Scirpus spp. Sparganium ramosum Hudson (syn. S. erectum L.) Stachys cf. arvensis L. Stellaria spp. Stratiotes aloides L. Thalictrum spp. Urtica sp. Verbena officinalis L. Veronica sp. Vitis parasylvestris Kirchheimer Zannichellia palustris L. Sequoia abietina (Brongniart) Erw. Knobloch Cupressaceae Acer tricuspidatum Bronn Cf. Quercus [as Fagus attenuata Göppert] Platanus cf. leucophylla (Unger) Erw. Knobloch Populus sp. [as Populus populina (Brongniart) Erw. Knobloch] Pterocarya paradisiaca (Unger) Iljinskaya Quercus sp. aff. Quercus castaneifolia C.A. Meyer [as Quercus castaneifolia] Quercus sp. aff. Quercus cerris L. [as Quercus kubinyii (Kováts ex Ettingshausen) Czeczott] Quercus sp. aff. Quercus cerris L. or Group Quercus according to Denk and Grimm (2010) Quercus sp. aff. Quercus drymeja Unger [as Quercus drymeja] Quercus sp. aff. Quercus mediterranea Unger [as Quercus mediterranea, Quercus ilex L.] Quercus sp. aff. Quercus ithaburensis subsp. macrolepis (Kotschy) Hedge et Yaltirika [as Quercus pontica miocenica Kubát] Quercus sp. aff. Quercus trojana Webbb [as Quercus libani Olivier] Sassafras ferrettianum Massalongo W+A W+A W+A W+A W+A W+A W+A Liana W+A W + A = wetland and aquatic plants. a Resembles specimens encountered in Quercus gigas Göppert emend. Walther et Zastawniak. b Resembles specimens encountered in Quercus kubinyii (Kováts ex Ettingshausen) Czeczott. Table 21 Taxa recorded from the Pleistocene of Rhodes (Map nos. 43 to 45). Megalopolis, Choremis, lower Pleistocene (Mädler, 1971; Velitzelos and Gregor, 1985; Nickel et al., 1996) Selaginella cf. denticulata Link Azolla filiculoides Lamarck ? Pinus sp. Aldrovanda vesiculosa L. Alisma plantago-aquatica L. Alnus sp. Arum sp. Asteraceae div. spp. ? Bignoniaceae Brasenia victoria (Caspary) Weberbauer Bulboschoenus maritimus (L.) Palla) [as Scirpus maritimus L.] Calla cf. palustris L. Callitriche sp. Carex flagellata C. Reid et E. Reid Carex spp. Ceratophyllum demersum L. Chenopodium cf. urbicum L. Cladium mariscus (L.) Pohl Cornus sp. Cyperus flavescens L. Elatine spp. Eriophorum spp. Euryale europaea C. Reid et E. Reid Heleocharis spp. Hippuris vulgaris L. Hypericum spp. cf. Litorella uniflora (L.) Ascherson Lycopus europaeus L. Melissa sp. Mentha cf. longifolia (L.) Nathorst Menyanthes trifoliata L. Myriophyllum spp. Najas spp. Nelumbo megalopolitana Weyland et Pflug Nuphar canaliculatum C. Reid et E. Reid Nymphaea cf. stellata Willdenow Nymphaeaceae rhizomes Oenanthe aquatica (L.) Poiret Polygonum spp. Potentilla spp. Potamogeton spp. (6 spp. in Mädler, 1971) Prunus sp. W+A W+A W+A W+A W+A ?Liana W+A W+A W+A W+A W+A W+A W+A W W W W W W + + + + + + A A A A A A W+A W+A W W W W W W W W W + + + + + + + + + A A A A A A A A A W+A (continued on next page) Rhodes, Pleistocene (Calabrian) ■ Archangelos, ca. 1.6 Ma (Velitzelos et al. (2002c)) Cupressus rhenana (Kilpper) Mai et Velitzelos Pinus sp. (d, l) Acer cf. campestre L. fossilis Alnus sp. (d) Betulaceae Ficus sp. Liquidambar europaea A. Braun (d, l) Quercus pseudocastanea Göppert Quercus sp. (d) Platanus lineariloba Kolakovsky Populus sp. Salix sp. (d) ■ Kallithea Mai and Velitzelos (2007) Cathaya cf. abchasica Sveshnikova (l) Pinus hepios (Unger) Heer (2-leafed fascicle) Pinus palaeostrobus Ettingshausen (5-leafed fascicle) Pinus strozzii C.T. Gaudin (cones) Pinus sp. (seeds) Juniperus oxycedrus L. fossilis (l) Juniperus bessarabica Negru (seed) Aff. Juniperus foetidissima Willdenow (l) Batrachium hederaceum (L.) S.F. Gray fossilis (d) Carpolithus coriaceus (Nikitin) Mai et Velitzelos (d) Coriaria collinsonae H.-J. Gregor (d) Coris monspeliensis L. fossilis (d) Cyperus longus L. fossilis (d) Ficus europaea Negru (d) Hyoscyamus reticulatus L. fossilis (d) Liquidambar europaea A. Braun (d) Mentha pulegium L. fossilis (d) Mercurialis annua L. fossilis (d) Moehringia sp. (d) Ranunculus lateriflorus DC. fossilis (d) Reseda luteola L. vel scoparia Broussonet fossilis (d) Salix sp. (d) Sambucus pulchella C. Reid et E. Reid (d) Teucrium cf. scordioides Schreber fossilis (d) Theligonum cynocrambe L. fossilis (d) Thymelaea passerina (L.) Cosson et Germain fossilis (d) Verbena officinalis L. fossilis (d) Plant organs are leaves if not indicated otherwise. d = diaspore, l = leaf. New records in bold. Rhodes, Pleistocene (Ionian) ■ Kolymbia, ca. 500 ky Boyd (2009) Cedrus bromleyi Boyd ?Cupressus sp. Glyptostrobus sp. Juniperus cf. oxycedrus L. Picea sp. Pinus cf. halepensis Miller Pinus kolymbiensis Boyd Acer Fagus Hypericum Liquidambar Palmae Quercus coccifera L. Salix Vitis Zelkova Angiosperms listed were not figured; the record of Fagus is questionable and needs to be verified; see text for reliability of Glyptostrobus. 78 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Table 22 Taxa recorded from the Pleistocene of Santorin (Map no. 47). Santorini, upper Pleistocene (Friedrich and Velitzelos, 1986; Velitzelos, 1990, 1991; new records in bold) Chamaerops humilis L. Coriaria myrtifolia L. Olea europaea L. Phoenix theophrasti Greuter Pistacia lentiscus L. Pistacia terebinthus L. Rhamnus alaternus L. Tamarix sp. gigas, Quercus pseudocastanea). Craigia may have been another accessory element of the Fagus forest. South-facing slopes or edaphically drier stands were covered by forest communities dominated by Quercus sosnowskyi and Quercus drymeja with Zelkova and Acer as accessory elements. Lianas were rare (Hedera). Overall, several species in the fossil plant assemblage of Vegora have biogeographic relationships to the Himalayas and Southeast Asia (Pinus vegorae, Acer aegopodifolium, Alnus gaudinii, Craigia, Q. drymeja, Q. gigas, Q. mediterranea, Q. sosnowskyi). 3.3.1.2. Prosilio, Lava, eastern West Macedonia (Messinian) (Table 7, Plates XVI–XVIII, Map 1, no. 20). At Prosilio and Lava, plant fossils are found in the diatomitic marls overlying the lignite seams; carpological remains originate from the diatomite between the lignitic layers (Velitzelos and Gregor, 1986; Knobloch and Velitzelos, 1986b). While the rich carpoflora reflects wetland and aquatic vegetation, the fossil flora from the marls is derived from a variety of vegetation types. Riparian and swamp forests are represented by Osmunda, Glyptostrobus, Taxodium, Alnus, Betula, Platanus, Populus, Pterocarya, Salix, and Sassafras. Well-drained forests of the hinterland were dominated by Fagus and various types of Quercus representing Group Quercus and Group Cerris (mesic type of forest), and by oaks belonging to Quercus Group Ilex (edaphically dry, south-facing slopes). Accessory elements characteristic of mesic mixed Fagus forests were Buxus and Craigia and possibly Hedera as a liana; Acer decipiens, Engelhardia orsbergensis, and Zelkova may have been associated with drier oak forests. Prosilio is the only locality in Greece that yielded Taxus (twigs with leaves and diagnostic cuticle). 3.3.1.3. Elassona, Likoudi, Drymos, northern Thessaly (Messinian) (Table 8; Plates XIX–XXIV; Map 1, no. 21). The plant-bearing whitish to yellowish– whitish diatomites of Likoudi were first investigated by Knobloch and Velitzelos (1986a) and Gregor (1986). More recently, Wojcicki and Velitzelos (2007) described a new endemic species of Trapa. The plantbearing deposits in Likoudi are not directly connected to the lignite beds and do not or very rarely contain the (coal-forming) swamp forest elements Glyptostrobus and Taxodium. Riparian elements are represented by Alnus, Liquidambar, Nerium, Platanus, Salicaceae, Pterocarya, Sassafras, and Ulmus. Aquatic plants comprise Egeria and Trapa. Welldrained forests were dominated either by Fagus or Quercus Group Ilex (more mesic and drier variants, respectively). The most characteristic feature of the plant assemblage from Likoudi is the great number of gymnosperms reflecting a wide spectrum of lowland and upland, dry and wet environments. Cathaya is represented by numerous leafy twigs and cones (Plate XIX, 11, 12, Plate XX, 1–5) suggesting that it grew in lowlands at the time of the deposition of the plant-bearing sediments. Cedrus is represented by extremely well-preserved cones and foliage and Taiwania by characteristic leafy twigs. These genera are today typical of the montane vegetation belt. In addition, Sequoia and Abies are indicative of well-drained mixed forests. Very few leaves of Ginkgo were recovered possibly originating from trees along small rivers. 3.3.1.4. Corfu (Kerkyra), Paghi (Messinian, Map 1, no. 22). The Messinian flora from Paghi, northern Corfu, was revised by Velitzelos and Gregor (1990). The poor fossil plant assemblage (Table 9) generally fits with the late Miocene floras from the mainland. Tsuga europaea is not confirmed by epidermal structures and needs re-examination, but would represent another conifer known only from a single locality in Greece. From this Messinian flora Fagus has not been recovered. Platanus academiae links Paghi with the younger floras of the Peloponnese (see Section 3.3.2). 3.3.1.5. Akropotamos and Iliokomi–Kormitsa, Strymon Basin, Thrace (late Miocene) (Table 10). The Strymon Basin is a post-orogenic graben filled with Miocene and Pliocene sediments. From the Messinian Akropotamos unit (Akropotamos, Kavala municipality) a few riparian elements and forest forming taxa from the well-drained hinterland were reported (Georgiades-Dikeoulia and Velitzelos, 1983). The macroflora recovered between Iliokomi and Kormitsa on the northwestern flank of the Pangaion Range (Velitzelos, 1993) reflects swamp forest vegetation (Pronephrium, Glyptostrobus, Myrica, Quercus neriifolia), and riparian and hinterland vegetation (Platanus, Quercus kubinyi). A Tortonian– Messinian (MN12) age has been tentatively suggested for the lignites in the Strymon Basin (Karistineos and Ioakim, 1989). Overall, this plant assemblage is similar to the Messinian Platana Fm. (see Section 3.3.2.1). 3.3.1.6. Palaeoecology and palaeogeography. Main characteristic of the late Miocene floras of the mainland is the Fagus gussonii dominance in the zonal plant assemblages. On edaphically drier stands or southfacing slopes Quercus drymeja and/or Quercus sosnowskyi were the dominating trees. Swamp forest communities were typically comprised of Glyptostrobus, whereas Myrica and Daphnogene were absent or very rare. Other riparian communities comprised taxa such as Betulaceae, Salicaceae, Liquidambar and Platanus. Local features are the great diversity of conifers (Cathaya cones and twigs, Cedrus cones, Taiwania, Taxus, etc.). Another typical feature is the frequent occurrence of large-leaved oaks, of which Quercus licudensis clearly shows affinities to East Asian white oaks (e.g. Quercus aliena Blume, Quercus dentata Thunberg in Murray, Quercus monnula Y.C. Hsu et H. Wei Jen, and Quercus serrata Thunberg). Differences in the floras of Vegora, Prosilio and Elassona are likely due to different palaeoenvironments. All floras contain Glyptostrobus, Acer tricuspidatum, Alnus ducalis, Fagus gussonii, Fraxinus, Quercus drymeja, Quercus mediterranea, and Quercus pseudocastanea. However, Glyptostrobus is very rare at Elassona. The floras of Vegora and Prosilio are derived from marls above coal seams and overall lack a number of elements reflecting the vegetation farther away from the depositional area; these elements are restricted to the plant assemblage from Elassona–Likudi. They include both plants indicative of mesic conditions and of drier stands (edaphically and/or micro-climatically). Mesic elements are Cathaya, Taiwania, Acer integerrimum, Betula pseudolumnifera, Corylus, possibly Laria, Liquidambar, Matudaea, and Quercus licudensis. Drier conditions can be inferred for Tetraclinis, Berberis, Buxus, Cercis (also in mesic forests), Gymnocladocarpum, Nerium (also a riparian element), Ostrya, and Paliurus. The lack of these elements in Vegora and Prosilio can be explained by the sedimentary context of the plant deposits. The few Miocene plant localities from Thrace are poor in species but clearly are more similar to coeval localities from the Peloponnese than from West Macedonia and Thessaly. The Pontian (Messinian) flora of Kodor (western Georgia; Kolakovsky, 1964) shares a number of plant taxa with the late Miocene floras of West Macedonia (Ginkgo, lobed and sclerophyllous oaks, Hedera) but the Georgian flora is richer in warmth-loving elements (Lauraceae, Myricaceae, Theaceae; Kvaček et al., 2002) and Fagus is a rare element in the flora of Kodor. Great similarities with the Greek floras are found in the early to late Messinian floras of Gabbro (Berger, 1957; E. Martinetto in Kovar-Eder et al., 2006; Fagus, Alnus, Quercus drymeja, Quercus mediterranea, Quercus roburoides and other types of white oaks, Craigia, Liquidambar). Daphnogene, Myrica and Ziziphus that are all absent from West Macedonia may be restricted to the D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 79 Plate VII. Ferns, gymnosperms and angiosperms from Grevena, Milea, Aquitanian. 1. Pronephrium stiriacum. 2. Phoenicites sp., partly covered by frond of Pronephrium. 3. Daphnogene polymorpha with Pronephrium. 4. cf. Cryptomeria sp. 5, 6. Quercus pseudocastanea. 7. Populus populina. 8. Ulmus braunii (left) and Quercus pseudocastanea. 9. Myrica lignitum. 10. Acer tricuspidatum. Scale bar is 2 cm. 80 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate VIII. Ferns and gymnosperms from Kimi, Euboea, Burdigalian. 1. Lygodium gaudinii. 2. Taxodium vel Sequoia. 3. Glyptostrobus europaeus. 4. “Encephalartos” gorceixianus. 5. Berberis kymeana. 6. Berberis sp. nov. ad Berberis Group Septentrionales. 7. Alnus cycladum S135580. 8. Carpinus grandis. 9. Alnus gaudinii S116789. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 81 Plate IX. Angiosperms from Kimi, Euboea, Burdigalian. 1. Lauraceae vel Fagaceae. 2, 3. Quercus drymeja. 4. Quercus sp., cupule. 5 to 7. Fagus castaneifolia. 8. Lauraceae 9, 10. Daphnogene polymorpha.. 11. Dicotylophyllum sp. Scale bar is 2 cm. 82 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate X. Angiosperms from Kimi, Euboea, Burdigalian. 1. Tilia knoblochii. Infructescence with bract and fruits. 2 to 4. Myrica lignitum. 5. Comptonia difformis forma dryandroides. 6. Acer sp., samara. 7, 8. Acer tricuspidatum. 9. Cedrelospermum ulmifolium. 10. Ulmus braunii. Scale bar is 2 cm in 6; 3 cm in 1 to 5 and 7 to 10. early Messinian assemblages in the Gabbro flora (E. Martinetto in Kovar-Eder et al., 2006). The mid-Messinian flora of Senigallia (Massalongo and Scarabelli, 1859; Ginkgo, Cryptomeria, abundant Fagus gussonii, Quercus gigas, Q. drymeja, Tetraclinis) also is closely similar to the plant assemblages from West Macedonia with the exception of the presence of Daphnogene and other (evergreen) Lauraceae in Senigallia. Various vegetation types and floristic elements typical of the late Miocene floras of Greece mainland had a wide distribution range in Europe. Early Tortonian plant assemblages of maritime Iceland were D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 83 Plate XI. Gymnosperms from Lesbos, Burdigalian. 1 to 6. Cunninghamia miocenica. 1 to 3. Branchlets with leaves. 4 to 6. Longshoots with leaf scars. 7 to 9. Sequoia vel Taxodium. 10. Pinus sp., cone. Scale bar is 3 cm. 84 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XII. Angiosperms from Lesbos, upper Pliocene of Vatera (1) and Burdigalian (2 to 9). 1. Sabal major. 2. Phoenicites sp. 3. cf. Betulaceae vel Rosaceae. 4. cf. Alnus sp. 5 to 7. Fagaceae vel Lauraceae. 8. Lauraceae. 9. Lauraceae vel Fagaceae, “Laurus” type. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 85 Plate XIII. Angiosperms from Lesbos, Burdigalian. 1, 2. Daphnogene polymorpha. 3. Tilia sp. 4. Engelhardia orsbergensis. 5, 6. Pungiphyllum cruciatum. 7. Dicotylophyllum sp.? aff. Platanus. 8, 9. “Rubus niacensis”. 10. Rhus sp. aff. R. coriaria L. 11. Populus balsamoides. 12. cf. Populus sp. 13. Unknown leaf or leaflet. Scale bar is 2 cm. 86 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XIV. Plant fossils from Lemnos, Burdigalian. 1. Opalized leafy axis of Sequoia abietina. 2. Opalized Cupressaceae cone. 3. Opalized Daphnogene polymorpha. 4, 6. Sabal sp. 5. Leaves of Lauraceae vel Fagaceae. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 87 Plate XV. Plant fossils from Vegora, Messinian. 1. Taxodium dubium. 2, 3. Pinus vegorae. Part and counterpart. 4. Fagus gussonii. 5. Quercus gigas. 6. Quercus pseudocastanea. 7. Sassafras ferrettianum. 8. Acer sp. aff. A. tricuspidatum. Scale bar is 5 cm. 88 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XVI. Ferns and gymnosperms from Prosilio, Messinian. 1. Osmunda parschlugiana. 2. Glyptostrobus europaeus. Fertile axis. 3 to 5. Taxodium dubium. 3, 4. Axis leafy. 5. Male inflorescence. 6 to 8. Pinus. 6. Cone. 7. Fascicle of two needles. 8. Axis leafy. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 89 Plate XVII. Angiosperms from Prosilio, Messinian. 1. Hedera multinervis. 2. Alnus gaudinii. 3, 4. Quercus gigas. 3. Large leaf with shallow dentition. 4. Basal part of leaf with prominent teeth. 5. Quercus cf. drymeja. 6. Quercus kubinyii. 7. Fagus gussonii. 8. cf. Viburnum sp. aff. V. dentatum. 9. Carpinus grandis. 10. Carpinus betulus fossilis, fruit. 11. Fagus deucalionis. Cupule. 12. Quercus sp. Two cupules on short stalk. Scale bar is 1 cm. dominated by Fagus gussonii and deciduous Quercus and included Pterocarya. Ginkgo, Cathaya, Glyptostrobus, Sequoia, Alnus gaudinii, Alnus cecropiifolia, Cedrelospermum, Platanus leucophylla, Sassafras, and Smilax are recorded for late Serravallian to early Tortonian fossil plant assemblages. However, these forests did not contain Tetraclinis and sclerophyllous Quercus drymeja and Quercus mediterranea (Denk et al., 90 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XVIII. Angiosperms from Prosilio, Messinian. 1. Potamogeton sp. 2. Craigia bronnii, fruit. 3. Quercus mediterranea. 4. Quercus pseudocastanea. 5. Quercus sosnowskyi. 6. Fraxinus sp., samara. 7. cf. Salix sp. 8. Platanus leucophylla. 9. Cf. Rosaceae. 10. Acer integrilobum. 11. Acer decipiens. 12. Acer pyrenaicum. 13, 14. Acer tricuspidatum. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 91 Plate XIX. Gymnosperms from Elassona, Messinian. 1. Ginkgo adiantoides. 2. Sequoia abietina. 3. Taxodium vel Sequoia sp. 4, 5. Taiwania sp. 6 to 8. Tetraclinis salicornioides. 9. Abies sp., cone scale. 10, 14, 15. Coniferales, axis leafy, cf. Glyptostrobus europaeus. 11, 12. Cathaya bergeri, cones. 13. Abies sp., seed. Scale bar is 2 cm. 92 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XX. Gymnosperms from Elassona, Messinian. 1 to 5. Cathaya sp., axis leafy. 6, 7. Cedrus viviani, cone. 8. Pinus sp., axis leafy. 9 to 11. Pinus sp., cones. 12. Sequoia abietina. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 93 Plate XXI. Angiosperms from Elassona, Messinian. 1. Nerium sp. 2. cf. Berberis. sp. 3. Alnus ducalis. 4. Alnus julianiformis. 5. Alnus cecropiifolia, 6. Betula pseudolumnifera. 7. Carpinus cf. miocenica, involucre. 8 to 10. Ostrya licudensis. 10. Specimen S116600. 11. Fagus gussonii. S116538. 12, 13. Quercus drymeja. Scale bar is 1 cm in 7, 9; 3 cm in 1 to 6, 8, 10 to 13. 94 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXII. Angiosperms from Elassona, Messinian. 1, 2. Quercus licudensis. 3, 4. Narrow leaf of Quercus licudensis. 5, 6. Quercus pseudocastanea. 7. Liquidambar europaea. 8. Egeria sp. Scale bar is 1 cm in 2, 4; 3 cm in 1, 3, 5 to 8. 2011). Kvaček et al. (2002) noted that many coeval floras of Central Europe and the eastern Paratethys do not contain sclerophyllous oaks. In contrast, the older, middle Miocene, floras of Parschlug and Lavanttal, Austria, contain abundant Q. mediterranea and Q. drymeja (see Section 3.2.3; Berger, 1955; Kovar-Eder et al., 2004). The Tortonian–Messinian plant assemblage from Pikermi–Chomateri (Attica) has not yielded a rich flora. Velitzelos and Gregor (1985) reported Glyptostrobus europaeus, Decodon globosus, Batrachium sp. (= Ranunculus subgenus Batrachium), Ceratophyllum sp., and Cladium sp. from the lignites above the sediments containing the famous Turolian fauna of Pikermi. The small assemblage reflects swamp forest vegetation. Symeonidis et al. (1973) provided a sedimentological analysis of the Pikermi habitat and suggested a varied landscape around a periodically drying-up lake basin, and Solounias et al. (2010) provided a biological analysis of the Pikermi fauna. 3.3.1.7. Taxonomic notes Egeria sp. — The specimens from Likoudi assigned here to the aquatic genus Egeria (Hydrocharitaceae) are identical to material from the early Miocene flora of Bes Konak (Anatolia), referred to as Saxegothaea D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 95 Plate XXIII. Angiosperms from Elassona, Messinian. 1. Pterocarya paradisiaca, leaflet. 2. Sassafras ferrettianum. 3. Sassafras cf. tenuilobatum. 4, 5. Laria rueminiana. Part and counterpart. 6, 8. Salix massalongii. 7. Platanus leucophylla. 9. cf. Rosaceae. Scale bar is 3 cm. 96 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXIV. Angiosperms from Elassona, Messinian. 1. Acer decipiens. 2 to 4. Acer integerrimum. 5. Acer sp. 6, 7. Sapindus falcifolius. 8. Trapa kvacekii. 9. Zelkova zelkovifolia. Scale bar is 2 cm. conspicua Lindley by Paicheler and Blanc (1981). The monotypic genus Saxegothaea (Podocarpaceae) occurs in southern Chile and southern Argentina today and has spirally arranged leaves. Leafy twigs only superficially resemble the fossils described here and by Paicheler and Blanc (1981). The decussate leaf arrangement as found in the fossil is very similar to Egeria. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 3.3.2. Peloponnese 3.3.2.1. Platana Formation, West Greece (Messinian) (Table 11; Map 1, nos. 24, 25). The term “Platana Formation” was introduced by Kleinhölter (1990) to describe several plant fossil assemblages from the Peloponnese. The sedimentary rocks of the Platana Fm. are deltaic sediments deposited at some distance from the sea shore (Kleinhölter, 1994b). Two facies, the “Diagon facies” and the “Zacharos facies” are recognized, of which the Diagon facies consists of laminated and homogeneous marls and the Zacharos facies of marls and sandstones. The majority of taxa represent riparian vegetation associated with oxbow lakes and wetlands in a deltaic system (Pronephrium, Taxodium, Daphnogene, Myrica, Liquidambar, Platanus, and some Fabaceae). Mesic forests of the hinterland were mixed broad-leaved deciduous and evergreen forests comprising Acer spp., Betulaceae, Craigia, possibly Quercus kubinyii, and Lauraceae. Fagus did not play an important role in these forests. On edaphically drier or south-facing slopes sclerophyllous oaks of Quercus Group Ilex (Quercus drymeja, Quercus mediterranea) with an admixture of Fabaceae and Zelkova may have thrived. A Messinian age was suggested for the floras of the Platana Fm. based on lithostratigraphy and the plant fossil record (Kleinhölter, 1994a,b). Taxonomically, this fossil assemblage comprises a mix of elements found in older floras (Pronephrium) and modern meso-Mediterranean elements (Platanus academiae) encountered in Pliocene floras (Skoura, Patras), but also in the Messinian flora of Paghi (Corfu). Daphnogene and Myrica are not typical of the late Miocene (Messinian) floras of Greece mainland, but were present in the Tortonian assemblages of Crete. A similar fossil plant assemblage is also known from Vallesian (early Tortonian) intramontane basins of northern Spain (MartínClosas and Delclòs, 2007). 3.3.3. Aegean Islands and Crete 3.3.3.1. Chios, North Aegean (Serravallian, to possibly late Miocene) (Table 12; Plates XXV–XXVI; Map 1, nos. 16, 17, 18). Neogene sediments are found in the southeastern part of the island. Four units have been distinguished by Besenecker (1973), of which the oldest Thymiana unit is limnic–fluviatile and contains vertebrate fossils (Fortelius, 2013). The age of the Thymiania unit is estimated to 17 to 15.2 Ma. Next is the middle Miocene fluviatile Zyfia unit that contains plant fossils. According to K. Mädler in Besenecker (1973) the fossil assemblage is dominated by Daphnogene polymorpha [as Cinnamomum sp.] and Populus sp. In addition, Lauraceae, Fagus, and Acer cf. monspessulanum were represented by three or more specimens. The Zyfia unit is followed by the terrestrial and limnic deposits of the Keramaria unit, which again contains vertebrates. Based on the vertebrates a Serravallian age has been suggested for the Keramaria unit (Böger, 1983). The youngest Nenita unit consists of limnic limestones, marls, sands, sandstones, volcanic tuffs and lignite seams. It contains a rich fauna and flora. Teller (1880, p. 353) based on determinations by D. Stur, mentioned “Fagus sp., Carpinus cf. grandis Unger (unsichere Bruchstücke [uncertain leaf fragments]), Carpinus pyramidalis Göppert, Populus n. sp. (eine Balsampappel [a balsam poplar]), Salix varians Göppert (nicht ganz sicher [not entirely certain]), Parrotia pristina Ettingshausen, Acer sp. (Frucht–Bruchstück [fragments of samara]), Podogonium lyellianum Heer” and suggested a Sarmatian (≈ Serravallian) age for the Nenita layers. From Kato Komi (Nenita unit), Mädler in Besenecker (1973) and Dermitzakis and Velitzelos (1985) mentioned plant fossils but did not figure them. Based on the badly preserved material housed at the University of Athens, previous identifications could only partly be corroborated, and only in a few cases the unambiguous assignment of fossil specimens was possible. The fossil assemblage from Kato Komi is dominated by Populus balsamoides and two more types of Populus foliage. Further, Zelkova and Ulmus are abundant in the fossil material. Very rarely, Acer tricuspidatum and Acer cf. integrilobum were encountered. Betulaceae are represented by foliage, cf. Alnus gaudinii, cf. Alnus julianiformis and 97 fruits of Carpinus (group of Carpinus tschonoskii Maximowicz according to Berger, 1953b). A single leaf fragment of Platanus leucophylla and Quercus mediterranea is present. Fabaceae are represented by three leaflet types and Podocarpium podocarpus (fruits and leaflets). A few leaves belong to Lauraceae (Daphnogene, Laurophyllum). Several other specimens are difficult to determine because details of the venation and the leaf margin are only rarely preserved. Quercus drymeja, Juglandaceae, and Salix may be further taxa of the Kato Komi assemblage, but the determination is unsecure. Previous reports of Fagus and Pistacia (Plate XXVI, 12) cannot be confirmed based on the available material. Overall, the dominance of Populus is suggestive of a riparian environment and some of the Fabaceae and sclerophyllous oaks might represent drier hinterland vegetation. The single involucre of Carpinus (Plate XXV, 2) is morphologically very similar to a number of Himalayan to Southeast Asian species (Carpinus henryana [H. Winkler] H. Winkler, Carpinus pubescens Burkill, and Carpinus viminea Wallich ex Lindley). 3.3.3.2. Crete (Makrilia, Pitsidia, Vrysses; Tortonian) (Table 13; Plate XXVII, Map 1, nos. 29–31). The middle Tortonian (8.6 to 7.7 Ma) flora from flysch sediments of Makrilia, southwestern Crete (Map 1, no. 29), has been described by Sachse and Mohr (1996) and Sachse (1997, 2004). The plant macrofossils are not very well preserved in many cases rendering unambiguous identification difficult. The fossil plant assemblage includes elements of wetlands and riparian stands such as Taxodium, Alnus, Daphnogene, Fraxinus, Myrica, Nyssa, palms, Pterocarya, Salix, and Ulmus. Lianas were represented by Vitaceae, Hedera, Smilax, and cf. Toddalia. On well-drained stands the fully humid to relatively drier spectrum of characteristic plant taxa includes Cathaya, Fagus gussonii, Tilia, possibly Magnoliaceae, Tetraclinis salicornioides, Acer decipiens, A. integerrimum, Celtis, Cistaceae, Engelhardia orsbergensis, Zelkova, and Quercus mediterranea. In addition, Sachse (1997) documented nine leaf/leaflet types of Fabaceae including Podocarpium. Furthermore, locally abundant frond fragments of palm foliage (Plate XXVII, 1–3) provide a new finding for the fossil flora of Makrilia. The assemblage is slightly older than the late Miocene mainland floras and slightly younger than the Mytilinii Formation of Samos (following section). Further macrofloras are known from Vrysses (Map 1, no. 31) northwestern Crete, and Pitsidia (Map 1, no. 30), southern Crete. In the Vrysses Basin, marly limestones of late Tortonian–early Messinian age (ca. 7.5 to 6 Ma) are exposed and contain a moderate number of plant macrofossils. The composition of the plant assemblage from Vrysses is similar to that of Makrilia; Salix, Populus, and Daphnogene represent riparian and possibly swamp vegetation and well-drained forests are represented by Tetraclinis, sclerophyllous oaks, Acer spp., and “Ziziphus” (Zidianakis et al., 2007). The age of the macroflora of Pitsidia (Zidianakis et al., 2010) in the Messara Basin, southern Crete, has been estimated at N 10.5 Ma based on the age of bioclastic limestones above the fossil-bearing sediments. For the close-by mammal site of Kastellios (Fortelius, 2013) a middle Tortonian age has been suggested. Although the fossil plant assemblage of Pitsidia is similar to the assemblages of Makrilia and Vrysses, it is distinctive in a number of characteristics: First, Comptonia difformis has only been recorded for this flora in Crete, and is an old element known from the early Miocene of Kimi. Further, deciduous lobed oaks and Liquidambar represent riparian elements different from the other two, slightly younger, Cretan localities. 3.3.3.3. Islands of Samos and Kos, North Aegean Sea (Tortonian to Messinian) (Table 14; Map 1, nos. 32, 33). The island of Samos is famous for its late Miocene mammal faunas (Solounias, 1981). In the Mytilinii Basin, Miocene to Pliocene sediments comprise the middle Miocene Basal Fm., the middle to early late Miocene (latest Serravallian to early Tortonian) Mavradzei Fm., the Vallesian (Tortonian) Hora Fm., the Turolian (Tortonian–Messinian) Mytilinii Fm., and the Mio-Pliocene 98 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Kokkarion Fm. (Kostopoulos et al., 2009). Based on radiometric dating and magnetostratigraphic correlations good age controls are available for the basalt flow and lahar above the Mavradzei Fm. (11.2 ± 0.7 Ma and 10.8 ± 0.4 Ma, respectively), the basal part of the Mytilinii Fm. (8.6 Ma) and various parts of the mammal-bearing sedimentary rock formation of the Mytilinii Fm. (e.g. 7.5, 7.3, 7.1 Ma). The mammal sites of Samos are part of the Mytilinii Fm. and range in age from 7.8 to 6.9 Ma (late Tortonian to early Messinian; Koufos et al., 2009). Palynological data are available from the Mavradzei Fm. (Ioakim and Solounias, 1985; Ioakim and Koufos, 2009), and from the younger Hora and Mytilinii Fms. (Ioakim and Koufos, 2009; termed Mavradzei, Hora, and Mytilinii pollen assemblages). Taxodium-type pollen, Myrica, Alnus, Salix, Liquidambar, Nyssa, Platanus, and Pterocarya are elements of wetlands and riparian communities. Celtis, Engelhardia, Eucommia, Zelkova, Castanea, and Fagus among angiosperms and Sequoia-type pollen, Abies, Cedrus, Tsuga, and Cathaya among the gymnosperms are indicative of well-drained forest communities. Of these, Celtis, and Zelkova typically grow in edaphically or aspect-wise drier conditions, whereas Fagus, Cathaya and others are indicative of fully humid conditions. Herbaceous elements and pollen of Quercus Group Ilex are rare in all three formations based on Figure 2 in Ioakim and Koufos (2009). At the same time, all three pollen assemblages record an intermittent peak in herbaceous pollen (amounting to ca. 20% in the Mavradzei Assemblage, ca. 25% in the Hora Assemblage, and b50% in the Mytilinii Assemblage). These maxima are followed by marked decreases in herbaceous pollen. Hence, the main part of the Mytilinii Fm. records b 10% of herbaceous pollen (Ioakim and Koufos, 2009). In general, palynological evidence clearly points to complex landscapes, involving well-drained forest communities at mid-elevations and higher-elevations and varying with different aspect, and wetlands and riparian communities comprising swamp forests and open areas dominated by herbaceous plants. From late Miocene lacustrine sediments of the Vasilio Formation, eastern Kos (Map 1, no. 33), possibly of Tortonian age (Willmann, 1983), Maffei (1930) reported Marchantia sp., Equisetum sp., Quercus etymodrys Unger (Unger, 1853, a shallowly lobed oak compared by Unger to Quercus prinus L. syn. Q. montana Willdenow, western North America), Populus mutabilis Heer, Ulmus antiqua Paoletti, Ilex aquifolium L., Acer trilobatum A. Braun, Typha latissima A. Braun, Arundo goepperti Heer, and Phragmites sp. The fossil plant assemblage was interpreted as representing wetlands surrounded by forests in a temperate climatic setting. We have not seen the material on which Maffei's (1930) study was based. However, the record of Quercus etymodrys for the late Miocene of Kos is interesting, because the leaf type described as Q. etymodrys by Unger from the Miocene of Gleichenberg is very similar to the lobed oaks from Pitsidia (Tortonian of Crete, Zidianakis et al., 2010; as Quercus roburoides). 3.3.3.4. Palaeoecology and palaeogeography. The late middle to early late Miocene floras of the Aegean islands clearly differ from the younger western Macedonian and Thessalian floras by the infrequent contribution of Fagus to the leaf assemblages and the presence of several types of Fabaceae in the Aegaean region, both in the macro- and microfossil record. Podocarpus podocarpum occurs in Tortonian sediments of Crete and Chios but is otherwise absent from the Greek Cenozoic record. This enigmatic genus has a stratigraphic range from Oligocene to Pleistocene in western Eurasia and East Asia. Parrotia is today endemic to the southern shores of the Caspian Sea and has a Miocene to Pleistocene fossil record that is centered in Central Europe. Overall, the Greek late middle Miocene floras are similar to those from the middle Miocene of Turkey, with low percentage of Fagus and presence of Parrotia (cf. Yavuz-Işık et al., 2011). The Tortonian floras furthermore are similar to coeval assemblages from northern Spain (Martín-Closas and Delclòs, 2007). 99 3.4. Pliocene 3.4.1. Greece mainland 3.4.1.1. Ptolemaida, West Macedonia (Table 15; Map 1, no. 34). The Pliocene lignites in the Ptolemaida area reflect a succession from lake systems and open mires to conifer swamps surrounded by well-drained broad-leaved deciduous forests (Weyland et al., 1960). A palynological study has been carried out by Weyland and Pflug (1957) and Weyland et al. (1960). The carpological assemblage from the lignite mines in the Ptolemaida area has been studied by Anastopoulos and Koukouzas (1972) and Velitzelos and Gregor (1985, 1990). The assemblage is dominated by aquatic plants and elements of swamp forests and riparian communities (Taxodium, Alnus, Liquidambar, and Quercus). Recently, thousands of leafy shoots of Potamogeton were recovered (D. Velitzelos, unpublished data). Lianas (Ampelopsis, Vitis) and plants of the welldrained hinterland are less abundant. Woody elements of the hinterland are represented by Fagus sp. and Cornus sp. (carpological remains) and Fagus, Castanea, and Buxus among others (pollen). 3.4.1.2. Zeli, Atalanti, Central Greece (late Pliocene) (Table 16; Plates XXVIII–XXIX; Map 1, no. 35). Neogene sediments in the Atalanti Basin (part of the Lokris Basin) are Pliocene and Pleistocene in age (Renginion formation; Kranis, 2007). They comprise lacustrine sediments (marls, clays and sandstones with intercalated lignites; Koskeridou and Ioakim, 2009). The plant-bearing deposits exposed at Zeli are of late Pliocene–earliest Pleistocene age based on mammal findings and palynological data from the associated lignites (Ioakim and Rondoyanni, 1988; Kranis, 2007). The macroflora of Zeli is moderately rich but highly informative based on its floral composition. Riparian elements are Alnus, Ulmus, and Juglandaceae. In the well-drained hinterland mesic stands were inhabited by Fagus aff. haidingeri, Quercus gigas, and Quercus pseudocastanea; Quercus aff. cerris, Quercus drymeja, and Tetraclinis were elements of edaphically and/or aspect-wise drier stands. In addition, Pinus is represented with various types of foliage and cones. Among the various types of Quercus foliage, extinct taxa co-occur with “modern” types, markedly similar to modern western Eurasian species of Quercus Group Cerris (Q. cerris and Quercus castaneifolia; Plate XXIX, 5, 6). This characteristic is shared with the Pliocene floras of Makrision, Megalopoli (see 3.4.2.4) and the Pliocene floras of Southeast Albania (Kleinhölter, 1995a, 2004), where leaves of Q. pseudocastanea and Q. aff. Q. cerris (as Q. sp. 1, Q. sp. 2) co-occur. Koskeridou and Ioakim (2009) briefly mentioned a microfloral assemblage from the Arkitsa section, about 15 km northeast of Zeli and suggested an early Pleistocene age based on the mollusk fauna present in the section. The small spore and pollen assemblage includes Pinus, Cedrus and Abies among the conifers, and Quercus ilex-type pollen, Olea, Cistus, Alnus, Carpinus, Eucommia, Ulmus/Zelkova, Platanus, Ericaceae, and Myrica among woody angiosperms. Herbaceous taxa comprise ferns, Amaranthaceae–Chenopodiaceae, Poaceae, Asteraceae, and Apiaceae. In general, the flora of Zeli is comparable to the Pliocene of Albania, and to the Pliocene flora of Megalopoli, Makrisio (see Section 3.4.2.4). 3.4.1.3. Taxonomic notes Fagus aff. haidingeri — The name Fagus aff. haidingeri is used here to denote late Pliocene Fagus foliage that differs from typical Fagus gussonii by its more slender leaf type (Denk, 2004). This morphotype is known from the Messinian–Pliocene of Italy (Denk, 2004) and from the Tortonian of northern Spain (T. Denk, unpublished data) and requires closer examination. Plate XXV. Angiosperms from Chios, Nenita layers, middle to upper Miocene. 1. Alnus gaudinii. 2. Carpinus sp. Group Carpinus tschonoskii according to Berger. 3 to 5. Podocarpium podocarpum, leaflets and fruits. 6. Fabaceae gen. et spec. indet. 7 to 9. Populus balsamoides. 10. cf. Lauraceae. 11. cf. Cedrela attica. 12. Lauraceous or fagaceous leaf. 13. Quercus mediterranea. Scale bar is 1 cm in 2; 2 cm in 1, 3 to 13. 100 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXVI. Angiosperms from Chios, Nenita layers, middle to upper Miocene. 1, 2. Populus sp. 3. Acer tricuspidatum. 4. Acer cf. integerrimum. 5. indet. angiosperm leaf. 6 to 8. Zelkova zelkovifolia. 9. cf. Zelkova sp. 10. Fagales cf. Juglandaceae. 11. Dicotylophyllum sp. 2. 12. cf. Pistacia miocenica. 13. cf. Fabaceae, leaflet. 14. Indet. angiosperm leaf. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 101 Plate XXVII. Angiosperms from Crete, Makrilia, middle Tortonian. 1 to 3. Palm foliage 4. Fagus gussonii S132717b. 5. Carya serrifolia S132720a. 6. Zelkova zelkovifolia S132714a. 7. Acer sp., samaras, SS132715a. Scale bar is 2 cm in 6, 7; 5 cm in 1 to 5. 3.4.2. Peloponnese 3.4.2.1. Skoura, Sparta, Laconia (Pliocene) (Table 17; Plates XXX, XXXI; Map 1, no. 37). The macroflora from Skoura has been described by Velitzelos and Knobloch (1986), Knobloch and Velitzelos (1987) and Velitzelos and Gregor (1990). The fossils originate from diatomaceous marls of Pliocene age. The lacustrine sediments yield a wide range of swamp forests and riparian elements (Osmunda, Glyptostrobus, Alnus, Platanus, Salicaceae, and Ulmus). Mesic forests of the well-drained hinterland contained deciduous species of Quercus and Sequoia; 102 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXVIII. Gymnosperms and angiosperms from Atalanti, Pliocene. 1, 2. Pinus sp., cone. 3. Pinaceae, leaves. 4. Alnus julianiformis. 5, 6. Carpinus sp. 7, 8. Fagus aff. haidingeri. 9, 10. Quercus drymeja. 11. Quercus aff. mediterranea 12, 13. Quercus sp., cupules. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 103 Plate XXIX. Angiosperms from Atalanti, Pliocene. 1, 2. Quercus drymeja. 3. Quercus cf. gigas. 4. Quercus pseudocastanea. 5, 6. Quercus aff. cerris. Part and counterpart. 7. Dicotylophyllum sp. 8. Dicotylophyllum sp. 9. Acer subcampestre. 10. Lauraceous leaf. Scale bar is 2 cm. 104 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXX. Plants from Skoura, Pliocene. 1. Alnus kefersteinii, cone and axis leafy of Cupressaceae. 2, 3. Quercus pseudocastanea. 4. Quercus roburoides. Part and counterpart. 5 to 8. Quercus aff. Quercus infectoria. 8. Arrowhead indicates long petiole of leaf. 9. Quercus aff. Q. infectoria subsp. veneris. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 105 Plate XXXI. Angiosperms from Skoura, Pliocene. 1 to 3. Platanus academiae. 3. Young leaf. 4. Liquidambar europaea. Infructescence head. 5. Indet. angiosperm leaf. Scale bar is 2 cm. 106 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 previous records of Fagus could not be confirmed on the basis of the material available to us. Among the plants typical of edaphically or aspect-wise drier stands are Quercus cf. mediterranea closely resembling the modern Quercus ilex and two types of foliage that are very similar to oaks of the subsection Galliferae (Plate XXX, 5–9), in particular Quercus infectoria species complex (cf. Tschan and Denk, 2012). Subsection Galliferae comprises modern semi-evergreen oaks of Quercus Group Quercus that are characteristic elements of the eastern Mediterranean region and the Near East (Browicz and Zieliński, 1982). Another element that has strong taxonomic affinities with a modern Mediterranean taxon is Platanus academiae, which strikingly resembles the modern Platanus orientalis. 3.4.2.2. Cythera (Kythira), Attica (early Pliocene; Map 1, no. 38). To the south of Cythera and in the Agios Mamas Basin, limnic-brackish sediments of early Pliocene age are exposed (Goldacker et al., 1985). A sequence of the Agios Mamas Basin yielded a small fruit and seed flora that reflects aquatic and lake shore pioneer vegetation (Table 18). 3.4.2.3. Grabens of Patra, Rion and Corinth, West Greece (late Pliocene) (Table 19; Map 1, no. 39). Kleinhölter (1995b) described six macrofloras from the Grabens of Patra, Rion and Corinth. Plant fossils originate from upper Pliocene sediments north and south of the Gulf of Corinth. The plant fossils mainly represent various types of riparian and lakeshore communities dominated either by (1) Quercus and Ulmus, (2) Liquidambar or (3) Platanus. Plants from the well-drained hinterland are not well represented in the sediments and comprise Buxus, Acer aff. opalus, Carpinus and Aesculus. A few leaflets assigned to Cassia by Kleinhölter (1995b) cannot reliably be referred to this particular genus. Cassia is a large genus comprising several hundreds of species, the leaves of which cannot be distinguished from a wide range of other genera within the Fabaceae. Overall, the absence of Fagus points to drier conditions which favored mixed forests of Acer, Carpinus, Craigia, Zelkova and Aesculus with Buxus as part of the understory. 3.4.2.4. Megalopoli, Makrision, Arcadia (late Pliocene) (Table 20, Plate XXXII; Map 1, no. 40). The basin of Megalopoli developed during the late Miocene and early Pliocene. Oldest sediment fillings exposed in the basin are of late Pliocene age and consist of limnic marls with intercalated lignites (Makrision layers; Velitzelos, 1993). A small fossil assemblage recovered from the eastern margin of the basin reported by Velitzelos (1993) has never been figured. Riparian elements are represented by Platanus leucophylla, Populus, Pterocarya, and Sassafras. Most characteristic of this small assemblage are a number of Quercus spp. Whereas Quercus drymeja and Quercus mediterranea persist from older periods, various types of foliage are closely similar to modern members of Quercus Group Cerris and Group Quercus. Of these, Quercus ithaburenis, Quercus cerris, and Quercus trojana at present are native to the East Mediterranean region including Greece, and Quercus castaneifolia is a relict species confined to the Hyrcanian region south of the Caspian Sea. 3.4.2.5. Neapoli, Cape Maleas, Laconia (Plio-/Pleistocene). Upper Pliocene/ lower Pleistocene fluvio-terrestrial deposits and marine and lacustrine pelites, sandstones, conglomerates, and carbonate rocks occur in the coastal parts of the southeastern Peloponnese (Sakellariou et al., 2010). From Cape Maleas, a petrified forest has been reported (E. Velitzelos, unpublished data). Although the suggested nature of the “trunks” and “stumps” belonging to palm trees is not clear (cf. Sakellariou et al., 2010), the presence of seeds strongly resembling the ones of date palm (Phoenix dactylifera L.) are interesting and need further investigation. Nearly identical specimens are known from middle Miocene sediments of northwestern Anatolia (Çanakkale, Çan; T. Denk, unpublished data). 3.4.3. Aegean Islands 3.4.3.1. Vatera, South Lesbos (late Pliocene) (Plate XII, 1; Map 1, no. 41). A rich late Pliocene fauna has been recovered from the surroundings of Vatera, southern Lesbos (Van der Geer and Sondaar, 2002; Koufos, 2009). Mammal fossils comprise several bovids, a giraffid, deer, Equus stenonis Cocchi, 1867, Nyctereutes megamastoides Pomes, 1842, Gazella borbonica Depéret, 1884, Anancus arvernensis Croizet et Jobert, 1828, Mammuthus meridionalis Nesti, 1825, and the monkey Paradolichopithecus arvernensis Depéret, 1929 (Van der Geer and Sondaar, 2002). In addition, a giant tortoise was found. The fluvial deposits comprise sandy clays, sandy conglomerates, silts and brecciaconglomerates. The mammal fossils are confined to the upper fluvial horizon (Koufos, 2009). Recently, a large palm frond (Plate XII, 1) was recovered from sandy clays of the Vatera Formation. The prominent apical extension of the rachis places the fossil within Sabal major. This is the only unequivocal finding of this type of sabaloid palm from Greece and represents one of the youngest records of Sabal in western Eurasia. Apart from the present record, the genus has also been recorded from lower Pliocene sediments in Georgia and from middle Pliocene sediments of Portugal (Mai, 1995). 3.5. Pleistocene 3.5.1. Megalopoli, Arcadia (Calabrian) (Table 20; Map 1, no. 42) The Pleistocene sediments of the Megalopoli Basin have yielded a rich carpoflora (Mädler, 1971). Aquatic and wetland plants dominate. Among the aquatic plants, the presence of various Nymphaeaceae is interesting. For example, the cold-resistant Euryale and Nelumbo might have disappeared from South Europe because of the postglacial desiccation in the Mediterranean area rather than the cool conditions during the Pleistocene. According to Mädler (1971), the presence of lianas such as the extinct Vitis parasilvestris suggests the presence of tall trees on the slopes surrounding the lake of Megalopoli. The record of a possible Bignoniaceae may represent a further liana. The tree and shrub component of the carpoflora is small. Some woody species encountered in the fossil assemblage occur in wetlands and on welldrained soils (Alnus, Prunus, Rubus, Sambucus), others are more typical but not exclusive of well-drained soils (Pinus, Cornus). Mohr (1985) reported pollen of Taxodiaceae (= Taxodioideae of Cupressaceae) and Castanea sp., but unfortunately did not figure it. Castanea would be another indicator for forested area behind the lake. 3.5.2. Rhodes and Kos, South Aegean (Calabrian) (Table 21; Plate XXXIII; Map 1, nos. 43–45, 47) The Pleistocene (Calabrian) floras of Rhodes are mainly known from the northeastern and eastern coast of the island (Velitzelos et al., 2002c; Mai and Velitzelos, 2007). Late Pliocene and Pleistocene marine sediments of the Kritika and Rhodes Formations are well-exposed and rich in plant fossils. From Archangelos (Map 1, no. 43), Velitzelos et al. (2002c) described macrofossils from a fine sandstone and conglomerate matrix. The dominance of leaf fragments in the assemblage indicates the allochtonous nature of the flora. Riparian vegetation is represented by Platanus, Liquidambar, Alnus, Populus, Salix and Ficus. Pinus, Acer, and deciduous lobed Quercus represent the vegetation of the well-drained hinterland. To the north, Mai and Velitzelos (2007) described a carpoflora from fluvial–lacustrine deposits of Kallithea (Map 1, no. 44) and established a Calabrian age based on bivalves. The plant assemblage from Kallithea comprises a unique mixture of relict and modern elements. Most prominent is the presence of Cathaya that had a wide distribution in the Northern Hemisphere during large parts of the Cenozoic, but is confined to a few mountain ranges in Central China at present (Liu and Basinger, 2000). Based on the associated taxa in fossil assemblages and its modern ecology, Cathaya is strongly indicative of warm and humid conditions. Pinus strozzii (Plate XXXIII, 1, 2) with clear affinities D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 107 Plate XXXII. Plants of Megalopolis, Makrision, upper Pliocene. 1. Cupressaceae. 2. Quercus mediterranea. 3. Quercus drymeja. 4. Quercus sp. 5. Quercus aff. Q. cerris. 6. Quercus aff. Q. ithaburensis. 7. Quercus aff. Q. trojana. 8. Quercus aff. Q. pseudocastanea. 9. Quercus aff. castaneifolia. 10. Sassafras ferrettianum. 11. Populus sp. Scale bar is 3 cm. 108 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXXIII. Plants of Rhodes, Archangelos, Calabrian. 1, 2. Pinus strozzii. Impression and compression of cones. 3, 4. Liquidambar europaea. 5. Liquidambar europaea. Infructescence head. 6. Quercus pseudocastanea. 7. Populus sp. Scale bar is 2 cm. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 to the modern Pinus canariensis C. Smith demonstrates the former circum-Mediterranean distribution of the lineage leading to the modern endemic Pinus canariensis (see also Section 3.3.2.1). Along with Cathaya, it may have been an element of higher elevations exposed to humid air masses coming from the sea. Apart from these relicts, modern Mediterranean taxa are found at Kallithea. Juniperus bessarabica is morphologically very similar to Juniperus macrocarpa Sibthorp et Smith. Ficus europaea belongs to the lineage of the modern Mediterranean Ficus carica L. Further, a number of herbaceous taxa are characteristic of the modern Mediterranean flora. Boyd (2009) described a flora from the Rhodes Fm., Lindos Bay Clay facies group at Kolymbia (Map 1, no. 45), for which he estimated an age of 500 ka. Plant compressions in marine sediments were ascribed to various extinct genera and species. Among conifers, the alleged presence of Cedrus, Glyptostrobus, Juniperus cf. oxycedrus, and Pinus kolymbiensis with possible affinities to Pinus canariensis is interesting and partly in agreement with the findings of Mai and Velitzelos (2007). The scarce material assigned to Glyptostrobus consists of minute twigs with two kinds of tiny leaves. The decussate rather than spiral arrangement and the strongly decurrent leaves along with the small size cast some doubt on the identity of these twigs. Boyd (2009) also reported Acer, Fagus, Liquidambar, Salix, Vitis, Zelkova, and Quercus coccifera. These records would need to be verified by illustrations. Palynological studies from the Mediterranean region lend some credibility to the findings from Kolymbia. For example, Russo-Ermolli (1994) reported pollen of Taxodiaceae, Cedrus, Eucommia and other exotic taxa from 650 to 450 ka sediments from South Italy. Subally et al. (1999) reported Taxodiaceae, Cedrus, Cathaya, and deciduous and evergreen Quercus from early Pleistocene (ca. 2–1.7 Ma) sediments from the Ionian Sea (Zakynthos). Overall, this suggests that a considerable number of mesic taxa persisted in the Mediterranean region well after the onset of the modern Mediterranean climate coinciding with Northern Hemisphere glacial expansion at ca. 2.7 Ma (Suc, 1984; Denk et al., 2011, ch. 13). The middle Pleistocene Irakli Fm. of eastern Kos (Map 1, no. 47) yielded macrofossils and pollen and spores. The macroflora has not been described; the palynoflora contains Pinus, Quercus, Castanea, and rare Tsuga, Abies, Picea, “Podocarpus”, Juniperus, and Liquidambar (Willmann, 1983) and is in need of revision. 3.5.3. Latest Pleistocene of Santorini, South Aegean Sea (60 ka) (Table 22; Plate XXXIV; Map 1, no. 46) Santorini is part of the Cycladean Volcanic Arc. During the last ca. 200 000 years, twelve major and numerous minor eruptions produced the Thera Pyroclastic Fm. (Druitt et al., 1989). The caldera walls of Thera consist of lavas and pyroclastics with very characteristic pumice layers. A plant layer above the so-called Middle Pumice Series contains well-preserved plant fossils. The age of this layer has initially been estimated at 37 to 35 ka based on a radiocarbon age of carbonized wood (Pichler and Friedrich, 1976) but has later been revised to ca. 60 ka (Friedrich and Velitzelos, 1986). Fossil plants from Santorini have first been described by Lacroix (1896), who recognized Chamaerops, Phoenix, Pistacia and Olea. A few more taxa have later been recognized (Friedrich, 1980). Of these, all are also found in the Mediterranean region today and Phoenix, Olea and Pistacia spp. are currently native to Crete. Chamaerops is a monotypic genus of palms confined to southwestern Europe (eastwards to Italy) and Northwest Africa. It grows in arid environments in southwestern Spain and as part of meso-Mediterranean vegetation along the North African coast, partly in connection with deciduous oaks, Quercus canariensis Willdenow (T. Denk, personal observation). The occurrence in Santorini is interesting as it demonstrates the circumMediterranean distribution of this plant until the latest Pleistocene. This is in accordance with the Cenozoic record of Chamaerops (see Section 3.3.1.1, Kolakovsky, 1964). Two new records for the Pleistocene 109 of Santorini are presented: Rhamnus alaternus and Coriaria myrtifolia (Plate XXXIV, 5, 6). 4. Discussion 4.1. Cenozoic vegetation development and ecological shifts In this review we used a comparative approach to extract evolutionary and ecological signal from more than 50 Oligocene to late Pleistocene plant assemblages of Greece. 4.1.1. Oligocene The early/middle Oligocene floras represent Paleogene European subtropical rain forests according to Mai (1995). The modern equivalent of these forests is laurel forest according to Schroeder (1998; Table 23). Evergreen Fagaceae (Eotrigonobalanus, Quercus Group Lobatae), Lauraceae (Daphnogene, various unassigned Lauraceae foliage) and Rhodomyrtophyllum co-occurred with characteristic Paleogene conifers (Calocedrus, Quasisequoia) and palms. Based on the palaeogeographical position, the land–sea distribution and the recovered flora, a fully humid warm temperate climate can be postulated. The presence of Myrica longifolia and Comptonia difformis may indicate weak seasonality (dry winters). Thus, the climatic characterisation for the early–middle Oligocene floras of Greece would be Cfa, Cwa according to Köppen (Kottek et al., 2006). In a palaeobiogeographic context it is important to note that the rich Rupelian and Chattian floras from France and Spain (Sanz de Siria, 1992; Mai, 1995; Sanz de Siria, 1996) are similar to the Greek floras but comprise a larger number of broad-leaved deciduous taxa (Betulaceae, Acer) than recorded from Evros. At the same time, the Southwest European floras are richer in Fabaceae and other small-leaved taxa. This may point to more pronounced seasonality (Cwa climate) but certainly not to “extremely dry conditions” (Barrón et al., 2010). 4.1.2. Miocene While a number of the Greek Oligocene taxa persisted into the Miocene, others had their first appearance after the Oligocene. Among them are evergreen Quercus of Group Ilex (Denk and Grimm, 2010; Denk et al., 2010) and lobed oaks belonging to Quercus Group Quercus. In addition broad-leaved deciduous taxa became an important component of the palaeovegetation (Acer spp., Fagus, Betulaceae, Ulmaceae, Tilia, etc.). The early and middle Miocene floras of Greece represent European broad-leaved deciduous forest with substantial contribution of laurophyllous leaves (warm temperate rain forests according to Mai, 1995). The co-occurrence of sclerophyllous taxa of Quercus Group Ilex with broad-leaved deciduous mesic taxa is indicative of warm temperate, fully humid or winter-dry (monsoonal) climates (Cf, Cw according to Köppen; laurel forests with deciduous elements according to Schroeder, 1998; Table 23, no. 2). This is consistent with the presence of Berberis (Greece, Anatolia; Kvaček and Erdei, 2001; Velitzelos and Denk, unpublished data) and Mahonia (Anatolia; Güner and Denk, 2012) with strong East Asian biogeographic links. As such, sclerohyllous oaks in the early Miocene of Greece and adjacent areas (Balkan Peninsula, Asia Minor) are not indicative of modern Mediterranean conditions contrary to the traditional view (e.g. Mai, 1981; “xerothermic centers” according to Palamarev, 1989). The abundant occurrence of Quercus mediterranea and Quercus drymeja is not common in fossil assemblages of Central Europe. However, abundant Q. drymeja and Q. mediterranea is also recorded from the middle Miocene floras of Austria (Parschlug, from where the two species were originally described, and Lavanttal) and Hungary (Erdöbénye, Tallya). Also in South Europe and Anatolia these species are not continuously abundant but appear to be confined to northern parts of peninsular Italy (late Miocene, Senigallia), Greece (Vegora, Prosilio, Likoudi), and intramontane basins in Anatolia (early and middle Miocene, Güvem, Soma). Commonly, they co-occur with mesic species (Fagus), which are absent in warmer and possibly drier 110 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Plate XXXIV. Angiosperms from Santorini, late Pleistocene. 1, 2. Pistacia lentiscus. 1. Dispersed leaflets. 2. Paripinnate leaf with winged rachis. 3, 4. Fronds of Chamaerops humilis. 5. Coriaria myrtifolia. 6. Rhamnus alaternus. 7. Olea europaea. Scale bar is 2 cm. Table 23 Thermic vegetation zones and hygric variants with modern natural vegetation types. Corresponding Cenozoic forest types are termed as follows: 1. Subtropical rain and laurel forests. 2. Warm temperate rain forests (including sclerophyllous taxa of Quercus). 3. European broad-leaved deciduous forests. 4. Sclerophyllous forests (since the Pleistocene). After Schroeder (1998, p. 113). Terms after and modified from Mai (1981, 1995). Degree of humidity Semihumid Humid Summer rain with threshold values Arctic Tundra Winter rain — Summer rain Arid Winter rain — — — — — — — — Forest line: thermic ca. 1 month > 10° Boreal coniferous Boreal coniferous forest forest (Larix) Boreal ca. 4 months > 10° 3 Broadleaved deciduous forest Nemoral coniferous hygric Nemoral forest Frosts > ca. –10° Meridional 2 1 Laurel forest Laurel forest with deciduous elements 4 Nemoral dry Cold desert Steppe woodlands Dry woodlands of the Sclerophyllous forest temperate zone No Frosts Tropic Tropical rainforest Seasonally dry tropical rain forest anthropogenic and climatic savannas Tropical and subtropical dry woodlands Hot desert No Frosts Austral Laurel forest Laurel forest with deciduous elements ca. 1 month > 10° Antarctic Sclerophyllous forest D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Thermic zones Semiarid Pampa thermic Tundra — — — — — 111 112 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 settings (e.g. Lesbos). Modern vegetation analogs can still be found in Greece at the eastern slope of Mt. Ossa (Thessaly), where the Mediterranean-type (Csa climate) coastal riparian forests (Tamarix, Platanus, Populus) at the foothill is replaced by a Quercus ilexdominated slope forest with plenty of Laurus nobilis L. in ravines. Higher-up, Fagus sylvatica L. (restricted to fully humid climates; Denk and Grimm, 2009b) becomes the dominant tree species. In the transitional zone, Q. ilex and L. nobilis form the second tree layer, while the canopy layer is exclusively made up of Fagus (T. Denk, personal observation). Quercus drymeja and Quercus mediterranea are rare or absent in early Miocene floras of Spain. This may be due to the more pronounced seasonal climate in Southwest Europe during the late Oligocene and early Miocene (cf. Barrón and Diéguez, 2001; Barrón et al., 2010). The sequence from the subtropical rain forests of the Oligocene (Evros) to the early Miocene forests (Kimi to Lesbos) probably corresponds to the present succession of forest types along a climate gradient from fully humid to subhumid as shown in Table 23 no. 1 to no. 2 (from Schroeder, 1998). Today, laurel forest occurs under a humid climate (Cfa Köppen climate type) transgressing into a laurel forest with deciduous elements under a subhumid climate with summer rain (Cwa) and into sclerophyllous forest under subhumid climate with winter rain (Csa; see Kottek et al., 2006 for further explanation and distribution of Köppen climate types). The advent of sclerophyllous oaks of Quercus Group Ilex in western Eurasia in the early Oligocene (Denk et al., 2012) may be related to the global cooling trend and increased seasonality in the early Oligocene (Zachos et al., 2001). In Greece, the earliest occurrence of sclerophyllous oaks of Quercus Group Ilex in the early Miocene may further be related to the change of land–sea distribution in the region from the early Oligocene to the early Miocene (Rögl, 1998); the warm and equable climate achieved by the end of the Oligocene lasted until the middle Miocene climatic optimum fostering a forest vegetation with laurel forests with deciduous elements (Table 23). Hence, the regional vegetation differences between the Aquitanian to Burdigalian floras of Greece may reflect regional tectonic settings (Meso-Hellenic Basin, Kimi-Aliveri Basin versus coastal conditions for Lemnos, Lesbos). The early late Miocene (Tortonian) is documented from Samos and Crete. The pollen and macrofloras both indicate complex landscapes, involving well-drained forest communities at mid-elevations and higherelevations, and varying with different aspect, and wetlands and riparian communities comprising swamp forests and open areas dominated by herbaceous plants (Ioakim and Koufos, 2009). Fagus is recorded from Samos and from the early and middle Tortonian sediments of Crete; also Cathaya has a continuous record from Samos and occurs in the middle Tortonian of Crete. Messinian plant-bearing sediments are exposed in Greece mainland (Vegora, Prosilio, Elassona), Corfu and the Peloponnese. The fossil plant assemblages of Greece mainland are characterized by the high abundance of (i) Fagus with lobed oaks of Quercus Group Quercus and Group Cerris as accessory elements, (ii) Quercus drymeja and Quercus mediterranea (and locally Quercus sosnowskyi), and (iii) the minor contribution or lack of Daphnogene and Myrica in swamp forest/riparian communities. In contrast, Fagus is very rare in the rich floras of the Platana Formation (Peloponnese), which contains elements from older strata (Pronephrium, Daphnogene, Myrica, and diverse Lauraceae) and modern meso-Mediterranean elements (Platanus academiae). The floras of Corfu and Central Thrace are more similar to the Platana Formation than to Greece mainland. In addition, a lobed oak (Quercus montebambolina) recorded for the Platana Formation is strikingly similar to the abundant oak foliage from the Tortonian Pitsidia flora of Crete (as Quercus roburoides). The absence of Fagus and presence of Daphnogene and other evergreen Lauraceae, and Myrica in these latter floras points to warmer and drier conditions as compared to the floras from West Macedonia and Thessaly. This interpretation is consistent with the distribution of plant functional types in the Messinian of the Mediterranean region (Kovar-Eder et al., 2006). 4.1.3. Pliocene The Pliocene is characterized by the persistence of “old” taxa, Glyptostrobus, Sequoia, Taxodium, Tetraclinis, Sassafras, evergreen Lauraceae and the appearance of modern taxa that are at present typical of the submediterranean vegetation belt between the nemoral broadleaved deciduous forest belt to the north and the eumediterranean sclerophyllous forest belt to the south (Schroeder, 1998). These taxa are oaks very similar to modern members of Quercus Group Cerris (Atalanti, Makrision) and to Quercus subsection Galliferae (Skoura), Platanus academiae (Patras, Skoura; lineage leading to the modern Platanus orientalis L., a taxon confined to Csa climates), and Zelkova (Patras). A further group of taxa encountered in Pliocene plant assemblages comprises so-called Tertiary relics that are currently confined to limited areas in western Eurasia commonly characterized by humid Cf climates (Aesculus cf. hippocastanum L., Patras; Liquidambar, Ptolemaida, Patras; Pterocarya, Makrision). Fagus is found in West Macedonia (Ptolemaida) and Central Greece (Atalanti), while it is absent further south. Quercus drymeja occurred in Central Greece and Peloponnese. The lack of Fagus and appearance of modern semideciduous elements (Q. subsect. Galliferae, lineage of Platanus orientalis) in the floras of the Peloponnese may indicate some sort of vegetation zonation from northern to southern Greece. 4.1.4. Pleistocene The Pleistocene in Greece reflects the gradual diasappearance of “exotic” groups, the disruption of formerly larger areas in groups that became relict taxa, and the emergence of modern Mediterranean species. In the Calabrian floras of Rhodes, taxa such as Cathaya persisted from older strata; Cathaya appears to have persisted in South Italy until at least 1.25–0.9 Ma (Follieri, 2010). Liquidambar, Platanus lineariloba (syn. Platanus academiae), and Ficus europaea (lineage leading to the modern Ficus carica) are present in the Calabrian of Rhodes and today are riparian meso-Mediterranean taxa (see Denk et al., 2001 for F. carica as Tertiary relic in Colchic humid warm temperate riparian forests). Pinus strozzi is morphologically very similar to the modern endemic Pinus canariensis C. Smith from the Canary Islands reflecting the formerly larger distribution of this taxon. Zelkova persisted in Rhodes at least until ca. 500 ka (Boyd, 2009) and is likely to have persisted until modern times in Crete, where the endemic Zelkova abelicea (Lamarck) Boissier (mostly Csa) has a number of populations across the mountain ranges of the island (Denk and Grimm, 2005). In a similar way, the youngest fossil record of Zelkova in Central Italy is from ca. 30 ka sediments (pollen) and macrofossils with botanical affinity to the Caucasian–Hyrcanian Zelkova carpinifolia (Pallas) Dippel (Cfa, Cfb) are known from ca. 300 ka sedimentary formations (Follieri et al., 1986). In addition to arborescent taxa, the Calabrian flora of Rhodes includes a number of herbaceous taxa that are closely similar to modern Mediterranean species (Mai and Velitzelos, 2007). The youngest macroflora of Greece is from Santorini, ca. 60 ka. Also here, the increasing dominance of modern Mediterranean taxa is seen (e.g. Coriaria myrtifolia, unambiguous Pistacia lentiscus). Of these, the palm Chamaerops humilis is confined to Southwestern Europe and Northern Africa today (Csa climate) while it had a circumMediterranean range until the latest Pleistocene. In general, the ecological shift to modern Mediterranean conditions is not seen prior to the Pleistocene in the macrofloras of Greece. 4.2. Distribution patterns of Cenozoic plants: biogeographic signals or stochasticity Distribution patterns of fossil plant taxa are difficult to assess because the fossil record reflects only a fraction of the actual palaeovegetation. Nevertheless, Cenozoic plant distributional patterns may D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 not be entirely stochastic but reflect true biogeographic patterns in some cases. In the following, we assess the quality of biogeographic signals from Cenozoic plant taxa of Greece. Further, we discuss to which extent distributional signals also reflect evolutionary change and palaeoecological differences between areas and/or time periods. True biogeographic patterns may be present in taxa such as Tilia knoblochii (irtyschensis) that has a Central Asian–Asian MinorSoutheast European late Oligocene to early Miocene distribution. A number of further taxa have a relatively restricted distribution based on the fossil record. For example, fossil taxa of Berberis Group Septentrionales and Mahonia Group Orientales (cf. Ahrendt, 1961) with clear taxonomic affinities with modern species from the southern Himalayas to Southeast Asia occur in the East Mediterranean and France (Kvaček and Erdei, 2001; Güner and Denk, 2012) but are absent from Spain. Similarly, reliable records of Dracaena are known from Anatolia (early/middle Miocene, Soma Formation, Denk et al., 2014) and France (middle Oligocene to early Miocene; Mai, 1995), but not from Spain and Greece. Also the extinct Simaroubaceae Chaneya is recorded from the early Miocene of Anatolia and from Central Europe, but absent from Spain (Teodoridis and Kvaček, 2005). Oldest fossils of Chaneya are known from the Eocene of North America and East Asia. The genus appears to have reached western Eurasia via Central Asia after the closure of the Turgai Seaway (Fagus pattern; see Denk, 2004). Cycad foliage from the early Miocene of Anatolia (Erdei et al., 2010) and Kimi (Kvaček and Velitzelos, 2000) possibly is conspecific with each other and with Oligocene/Miocene fossils of Switzerland, but has not been recorded from Spain. The biogeographic pattern seen here is compatible with the pattern seen in Quercus mediterranea and Quercus drymeja, which are very rare or absent in contemporaneous floras of Spain. In contrast, small-scale distributional patterns such as the presence or lack of roburoid oaks, Liquidambar, and Platanus in riparian assemblages of the Messinian Platana Formation (Kleinhölter, 1994a,b), may be stochastic. Likewise, Liquidambar is very rarely encountered in the Messinian floras of Greece mainland (only recorded from Likoudi); because of differing depositional environments. Riparian elements such as Liquidambar, Salix, and Nerium are absent in coal forming swamp forests but were recovered from Likoudi, where the plant bearing sediments are not associated with lignites. The same might be true for the dominance of palms in Aetochori, reflecting a coastal swamp, while palms are rare or absent in other fossil localities in the Evros region. A further highly stochastic distribution pattern in the macro fossil record is seen in some rare conifer taxa. For example, Cathaya and Cedrus both are very rare in the macrofossil record (leafy twigs, cones) but are commonly encountered in the palynological Cenozoic record of the East Mediterranean region and elsewhere (e.g. Grímsson and Zetter, 2011; Yavuz-Işık et al., 2011). Here, a taphonomic filter against taxa that grew far away from the depositional area, e.g. in the montane vegetation belt, might reduce the chance to find macro fossil remains. Rare Cedrus cones and abundant cones and leafy twigs of Cathaya in Elassona (see Section 3.3.1.3) may however suggest that they grew at lower elevations. 4.3. Landscape evolution in the eastern Mediterranean region: the savannah myth revisited Palaeobotanical evidence suggests that early to late Oligocene landscapes in East Thrace were covered by forest vegetation consisting of swamp and riparian forests with a rich component of lianas and ferns. Typically, a number of woody species tolerant to high ground water tables might also have been part of the forests of the well-drained hinterland. The zonal forests were ‘subtropical rain and laurel forests’ according to Mai; their corresponding modern forest type is laurel forest in a warm temperate fully humid climate setting (Cfa climate; Table 23). Additionally, palynological data indicate the presence of rich coastal mangrove vegetation and palm-rich stands (Akgün et al., 2013). 113 The early Miocene vegetation of Greece and adjacent areas was broadleaved deciduous forest with substantial contribution of laurophyllous taxa (‘warm temperate rain forests’ including sclerophyllous oaks; Table 23). The corresponding modern forest type is laurel forest with deciduous taxa (Schroeder, 1998) and differs from the fully humid laurel forest by a more seasonal climate (summer rain; Cwa climate). Sclerophyllous oaks of Quercus Group Ilex have traditionally been considered indicators of sclerophyllous forests of the Mediterranean (summer dry) type (e.g., Axelrod, 1975; Palamarev, 1989; Mai, 1995; Yavuz-Işık et al., 2011) and were treated as a distinct vegetation type by Mai (1995; “European dry and sclerophyllous forests”). As outlined above, they fit more accurately with humid warm temperate laurel forests (Table 23; Denk and Grimm, 2009a, 2010; Denk et al., 2010). From the early Miocene of Kizilcahaman–Keseköy, Beskonak, and Güvem (Anatolia) one of the richest fossil floras of the eastern Mediterranean region is known (macrofossils: Kasaplıgil, 1977; Paicheler and Blanc, 1981; Denk and Güner, unpublished data; palynology: YavuzIşık, 2008; Yavuz-Işık et al., 2011). Macrofossil and pollen data point to a complex landscape consisting of aquatic vegetation, swamp and riparian forests, and adjacent well drained forests dominated by Fagaceae including abundant Quercus drymeja and Quercus mediterranea. Fagus, Tilia, and Cathaya were elements of the mesic hinterland. A study of phytoliths from the Keseköy mammal locality concluded that grass-dominated habitats were established in central Anatolia by at least the early Miocene as a result of the rise to ecological dominance of open-habitat grasses (Strömberg et al., 2007). This interpretation is at odds with the macrofossil, palynological, and vertebrate records (Fortelius, 2013) from the same layers and probably needs to be revised. It should be noted that Strömberg et al. (2007) found high percentages (c. 50%) of “other forest indicators” in two of the three samples from the Güvem Formation, but did not discuss this result. The forest types of the early Miocene persisted nearly unchanged into the middle and late Miocene. First marked changes towards the modern Mediterranean flora taking place in the late Miocene probably did not dramatically affect the physiognomy of the chief vegetation types: Riparian and swamp forest vegetation and welldrained forest vegetation under different aspects, edaphic conditions, and microclimates. European broad-leaved deciduous forests with conifers closely coexisted with laurel forests including sclerophyllous oaks during the Messinian and Pliocene in Greece mainland. The palaeobotanical record of the famous Tortonian to Messinian vertebrate sites of Pikermi (Attica) and Samos have yielded a poor macro flora (Pikermi) and a moderately rich palynoflora (Samos). Although excessively discussed in the palaeozoological literature, no palaeobotanical assessment of the environmental conditions of these faunas is available. Strömberg et al. (2007) suggested savannah vegetation for the Pikermian biomes (including Samos). The palaeobotanical record unambiguously demonstrates the presence of forests (warm temperate rain forests). Mesophytic conifers (Cathaya) and broadleaved deciduous taxa (Fagus) suggest the presence of forest vegetation in the hinterland of the depositional areas (Ioakim and Koufos, 2009). Swamp and riparian forests along rivers, lakes and marine deltas are also recorded for Pikermi and Samos (Ioakim and Solounias, 1985; Velitzelos and Gregor, 1985; Ioakim and Koufos, 2009). At the moment, the environmental interpretation by Solounias et al. (2010) is the only meaningful one. These authors suggest a complex landscape including light and dense forest with open areas along rivers and lakes that would provide the ecological niches necessary for the diverse fauna, and also provide a simple explanation for the relatively high proportion of pooid phytoliths found by Strömberg et al. (2007). Physiognomically, such a landscape would be similar to the tropical deciduous forest of the Central Indian Highlands (Kanha forest region; Solounias et al., 2010), where open grass-dominated parts are inundated during the wet season and savannah-like during the dry winter season. In the Kanha forest, Poaceae is the genus- and species-richest family (66 genera and 109 114 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 species, compared to a total of 231 genera and 437 species in the ten dominant families; Pandey and Namdeo, 2009). The Pliocene period is marked by changes in forest structure. Forest vegetation on the Peloponnese might have resembled the modern situation encountered in the Bursa Province, Northwest Anatolia, where broad-leaved deciduous forests (Quercus infectoria, Q. trojana) merge into mesic broad-leaved deciduous and conifer forests at higher elevations (Ulu-Dağ; Walter, 1956). This region is characterized by a borderline climate between summer-dry Csa and fully humid Cfa climate. Acknowledgments This research was supported by a VR (Swedish Research Council) grant to TD. Valuable suggestions by Zlatko Kvaček, Vasilis Teodoridis, and Hans Kerp are greatly acknowledged. Appendix A. Supplementary data Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.revpalbo.2014.02.006. These data include Google maps of the most important areas described in this article. References Ahrendt, L.W.A., 1961. Berberis and Mahonia. J. Linn. Soc. Bot. 57, 1–369. Akgün, F., Akkiraz, M.S., Üçbaş, S.D., Boczu, M., Kapan, S., Bozcu, A., 2013. Oligocene vegetation and climate characteristics in north-west Turkey: data from the south-western part of the Thrace Basin. Turk. J. Earth Sci. 22, 277–303. Anastopoulos, J., Koukouzas, C.N., 1972. Economic geology of the southern part of the Ptolemais lignite basin (Macedonia, Greece). Geological & Geophysical Research, 161(1). I.G.M.E 1–189. Antoniadis, P.A., Rieber, E., 1997. Zu Fossilinhalt, Kohlengenese und Stratigraphie des Kohlebeckens von Lava in Nordgriechenland. Acta Palaeobotanica 37, 61–80. Axelrod, D.I., 1975. Evolution and biogeography of Madrean–Tethyan sclerophyll vegetation. Ann. Mo. Bot. Gard. 62, 280–334. Barrón, E., Diéguez, C., 2001. Estudio macroflorístico del Mioceno Inferior lacustre de la cuenca de Rubielos de Mora (Teruel, España). Bol. Geol. Min. 112 (2), 13–56. Barrón, E., Lassaletta, L., Alcalde-Olivares, C., 2006. Changes in the Early Miocene palynoflora and vegetation in the east of the Rubielos de Mora Basin (SE Iberian Ranges, Spain). N. Jb. Geol. Paläont. (Abh.) 242, 171–204. Barrón, E., Rivas-Carballo, R., Postigo-Mijarra, J.M., Alcalde-Olivares, C., Vieira, M., Castro, L., Pais, J., Valle-Hernández, M., 2010. The Cenozoic vegetation of the Iberian Peninsula: a synthesis. Rev. Palaeobot. Palynol. 162, 382–402. Benda, L., de Bruijn, H., 1982. Biostratigraphic correlations in the Eastern Mediterranean Neogene. 7. Calibration of sporomorph and rodent associations in the Aliveri–Kymi basin/Island of Euboea (Greece)—with a contribution by H.J. Gregor. Newsl. Stratigr. 11, 128–135. Benda, L., Meulenkamp, J.E., Schmidt, R.R., Steffens, P., 1977. Biostratigraphic correlations in the Eastern Mediterranean Neogene. 2. Correlation between sporomorph associations and marine microfossils from the Upper Oligocene–Lower Miocene of Turkey. Newsl. Stratigr. 6, 1–22. Benda, L., Meulenkamp, J.E., Schmidt, R.R., 1982. Biostratigraphic correlations in the Eastern Mediterranean Neogene. 6. Correlation between sporomorphs, marine microfossils and mammals from some Lower to Upper Miocene sections of the Ionian Islands and Crete. Newsl. Stratigr. 11, 83–93. Berger, W., 1953a. Jungtertiäre Pflanzenreste aus dem Gebiete der Ägäis (Lemnos, Thessaloniki). Ann. Géol. Pays Hellén. 5, 34–65. Berger, W., 1953b. Studien zur Systematik und Geschichte der Gattung Carpinus mit Beschreibung einiger neuer Arten aus dern Altpliozän des Wiener Beckens. Bot. Notiser 106, 1–47. Berger, W., 1955. Jungtertiäre Pflanzenreste aus dem unteren Lavanttal in Ostkärnten. N. Jb. Geol. Paläont. (Abh.) 100, 402–430. Berger, W., 1957. Untersuchungen an der obermiozänen (Sarmatischen) Flora von Gabbro (Monti Livornesi) in der Toskana. Palaeontogr. Ital. 51 (21), 1–96. Besenecker, H., 1973. Neogen und Quartär der Insel Chios (Ägäis), Freie Univ. Berlin (PhD thesis). Böger, H., 1983. Stratigraphische und tektonische Verknüpfungen kontinentaler Sedimente des Neogens im Ägäis–Raum. Geol. Rundsch. 72, 771–814. Boyd, A., 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Hist. Biol. 21, 1–15. Brongniart, A., 1833. Notice sur une conifère fossile du terrain d'eau douce de l'île d'Iliodroma. Ann. Sci. Nat. 1 (30), 168–176. Brongniart, A., 1861. Note sur une collection des plantes fossiles recueillies en Grece par M. Gaudry. C.R. Hebd. Seances Acad. Sci. 52, 1232–1239. Browicz, K., Zieliński, J., 1982. Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions, 1. Polish Scientific Publishers, Warsaw, Poznan (172 pp.). Brunn, J.H., 1956. Contribution á l'ètude gèologique du Pinde septentrional et d'une partie de la Macèdoine occidentale. Ann. Géol. Pays Hellén. 7, 1–413. Butzmann, R., Velitzelos, E., Velitzelos, D., 2007. Oligozäne Makroflora aus den tuffitischen Mergeln des Ergene–Beckens — Tychero, W-Thrakien, NE-Griechenland. In: Elicki, O., Schneider, J.W. (Eds.), Fossile Ökosysteme. Jahrestagung der Paläontologischen Gesellschaft. Kurzfassungen der Vorträge und Poster, 36. Wissenschaftliche Mitteilungen, Technische Universität Bergakademie Freiberg, Institut für Geologie, pp. 24–25. Christofides, G., Pécskay, Z., Eleftheriadis, G., Soldatos, T., Koroneos, A., 2004. The Tertiary Evros volcanic rocks (Thrace, northeastern Greece): petrology and K/Ar geochronology. Geol. Carpath. 55, 397–409. de Bruijn, H., van der Meulen, A.J., Katsikatsos, G., 1980. The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Part 1. The Sciuridae. Proc. K. Ned. Acad. Wet. B 83, 241–261. de Bruijn, H., Ünay, E., van den Hoek Ostende, L.W., 1996. The composition and diversity of small mammal associations form Anatolia through the Miocene. In: Bernor, R.L., Fahlbusch, V., Mittmann, H.-W. (Eds.), The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia Univ. Press, New York, pp. 266–270. Denk, T., 2004. Revision of Fagus from the Tertiary of Europe and southwestern Asia and its phylogenetic implications. Doc. Nat. 150, 1–72. Denk, T., Grimm, G.W., 2005. Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot. J. Linn. Soc. 147, 129–157. Denk, T., Grimm, G.W., 2009a. Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int. J. Plant Sci. 170, 926–940. Denk, T., Grimm, G.W., 2009b. The biogeographic history of beech trees. Rev. Palaeobot. Palynol. 158, 83–100. Denk, T., Grimm, G.W., 2010. The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59, 351–366. Denk, T., Velitzelos, D., 2002. First evidence of epidermal structure of Ginkgo from the Mediterranean Tertiary. Rev. Palaeobot. Palynol. 120, 1–15. Denk, T., Frotzler, N., Davitashvili, N., 2001. Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biol. J. Linn. Soc. 72, 287–332. Denk, T., Tekleva, M.V., Zetter, R., Hofmann, C.-C., 2010. Importance of pollen characteristics for systematics of living and fossil oaks (Quercus, Fagaceae). Program and Abstracts, 8th European Palaeobotany–Palynology Conference 2010, Budapest, p. 78. Denk, T., Grímsson, F., Zetter, R., Símonarson, L.A., 2011. Late Cainozoic floras of Iceland. 15 million years of vegetation and climate history in the northern North Atlantic. Topics in Geobiology, 35. Springer, Dordrecht (870 pp.). Denk, T., Grímsson, F., Zetter, R., 2012. Fagaceae from the Early Oligocene of Central Europe: persisting New World and emerging Old World biogeographic links. Rev. Palaeobot. Palynol. 169, 7–20. Denk, T., Grimm, G.W., Grímsson, F., Zetter, R., 2013. Evidence from “Köppen signatures” of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling. Biogeosciences 10, 7927–7942. http:// dx.doi.org/10.5194/bg-10-7927-2013. Denk, T., Güner, H.T., Grimm, G.W., 2014. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena). Rev. Palaeobot. Palynol. 200, 211–228. Dermitzakis, M.D., Velitzelos, E., 1985. Tertiary flora remains from Aegean area: the makroflora from Chios island (Greece). Rapp. Commun. Int. Méditerr. 29 (2), 165–166. Dermitzakis, M.D., Georgiades-Dikeoulia, E., Velitzelos, E., 1985/1986. Ecostratigraphic observations on the Messinian deposits of Akropotamos area (Kavala, N. Greece). Ann. Géol. Pays Hellén. 33, 367–376. Đorđević-Milutinović, D., Ćulafić, G., 2010. Vegetation succession during the Miocene period in the area of Berane-Police Basin. Nat. Monten. 9, 215–247. Druitt, T.H., Mellors, R.A., Pyle, D.M., Sparks, R.S.J., 1989. Explosive volcanism on Santorini, Greece. Geol. Mag. 126, 95–126. Erdei, B., Akgün, F., Lumaga, M.R.B., 2010. Pseudodioon akyoli gen. et sp. nov., an extinct member of Cycadales from the Turkish Miocene. Plant Syst. Evol. 285, 33–49. Ettingshausen, C. von, 1888. Die fossile Flora von Leoben in Steiermark. 1, 2. Theil. Denkschriften Math. Naturwiss. Cl. Kaiserlichen Akad. Wiss. 54, 261–318 (319–384). Ferrière, J., Reynaud, J.-Y., Pavlopoulos, A., Bonneau, M., Migiros, G., Chanieri, F., Proust, J.-N., Gardin, S., 2004. Geologic evolution and geodynamic controls of the Tertiary intramontane piggyback Meso-Hellenic basin, Greece. Bull. Soc. Géol. Fr. 175, 361–381. Follieri, M., 2010. Conifer extinction in Quaternary Italian records. Quat. Int. 225, 37–43. Follieri, M., Magri, D., Sadori, L., 1986. Late Pleistocene Zelkova extinction in Central Italy. New Phytol. 103, 269–273. Fortelius, M., 2013. (coordinator) New and Old Worlds Database of Fossil Mammals (NOW) University of Helsinki (http://www.helsinki.fi/science/now/. dataset downloaded December 1, 2012). Friedrich, W.L., 1980. Fossil plants from Weichselian interstadials, Santorini (Greece) II. In: Doumas, C. (Ed.), Papers and Proceedings, 2nd International Scientific Congress Santorini. London, pp. 109–128. Friedrich, W.L., Velitzelos, E., 1986. Bemerkungen zur spätquartären Flora von Santorini (Griechenland). Cour. Forschungstinst. Senckenb. 86, 387–395. Fritel, P.H., 1921a. Flore aquitanienne d'Oropo (Grèce). Bull. Mus. Hist. Nat. 27, 471–476. Fritel, P.H., 1921b. Revision de la flore aquitanienne de Coumi (Grèce). Bull. Mus. Hist. Nat. 27, 576–580. Fuchs, T., 1877. Studien über die jüngeren Tertiärbildungen Griechenlands. Denkschriften Kaiserlichen Akad. Wiss. Math. Naturwiss. Cl. 37, 1–42. Gemici, Y., Akyol, E., Akgün, F., Seçmen, Ö., 1991. Soma kömür havzasi fosil makro ve mikroflorası. MTA Dergisi 112, 161–178. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Georgiades-Dikeoulia, E., Velitzelos, E., 1983. Occurrence of Messinian sediments in the north Aegean region (Basin of Strymon, Akropotamos). Terra Cognita 3, 223–224. Goldacker, R., Jurhenliemk, P., Klumann, H., Woith, H., Gregor, H.J., 1985. Paläokölogie und Stratigraphie des Agios Mamas Beckens (Neogen) der Insel Kythira (Griechenland). Doc. Nat. 25, 15–20. Gregor, H.J., 1983. A Lower Miocene fruit and seed flora from the browncoal of Aliveri (Island of Evia, Greece). Doc. Nat. 6, 1–26. Gregor, H.J., 1986. Gymnocladocarpum velitzelosii nov. gen. et spec. aus den obermiozänen Diatomiten von Likudi (Griechenland). Doc. Nat. 29, 41–43. Gregor, H.-J., 1990. Contributions to the late Neogene and early Quaternary floral history of the Mediterranean. Rev. Palaeobot. Palynol. 62, 309–338. Grímsson, F., Zetter, R., 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50, 262–310. Güner, T., Denk, T., 2012. The genus Mahonia in the Miocene of Turkey: taxonomy and biogeographic implications. Rev. Palaeobot. Palynol. 175, 32–46. Hably, L., 1983. Early Miocene plant fossils from Ipolytarnóc, N Hungary. Geol. Hung. Ser. Palaeontol. 45, 77–255. Heer, O., 1855. Flora tertiaria Helvetiae. I. Wurster & Comp., Winterthur. Heer, O., 1859. Flora tertiaria Helvetiae. III. Wurster & Comp., Winterthur. Iamandei, S., Iamandei, E., Velitzelos, E., 2010. The Late Oligocene–Early Miocene petrified forest in Evros and its paleoclimatic significance. 19th Congress of the Carpathian– Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010. Geologica Balcanica, 39, p. 162 (Abstracts Volume). Innocenti, F., Kolios, N., Manneti, P., Mazzuoli, R., Peccerillo, A., Rita, F., Villari, L., 1984. The geology and geodynamic significance of Tertiary orogenic volcanism in Northeastern Greece. Bull. Volcanol. 47, 25–37. Ioakim, C., Koufos, G.D., 2009. The late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: new collection. 3. Palynology. In: Koufos, G.D., Nagel, D. (Eds.), The Late Miocene Mammal Faunas of Samos. Beiträge zur Paläontologie, 31, pp. 27–35. Ioakim, C., Rondoyanni, T., 1988. Contribution à l'étude géologique de la région de Zeli, Locride (Grèce centrale). Rev. Micropaleontol. 31, 129–136. Ioakim, C., Solounias, N., 1985. A radiometrically dated pollen flora from the Upper Miocene of Samos Island, Greece. Rev. Micropaleontol. 28, 197–204. IPNI (The International Plant Names Index), 2012. (Published on the Internet) http:// www.ipni.org (accessed 1 January 2014). Jähnichen, H., Mai, D.H., Walther, H., 1977. Blätter und Früchte von Engelhardia Lesch. ex Bl. (Juglandaceae) aus dem europäischen Tertiär. Feddes Repert. 88, 323–363. Jähnichen, H., Friedrich, W.L., Takáč, M., 1984. Engelhardioid leaves and fruits from the European Tertiary. II. Tertiary Res. 6, 109–134. Kadereit, J.W., Baldwin, B.G., 2012. Western Eurasian–western North American disjunct plant taxa: the dry-adapted ends of formerly widespread north temperate mesic lineages—and examples of long-distance dispersal. Taxon 61, 3–17. Karistineos, N., Ioakim, C., 1989. Palaeoenvironmental and palaeoclimatic evolution of the Serres basin (N. Greece) during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 275–285. Kasaplıgil, B., 1977. A late Tertiary conifer–hardwood forest from the vicinity of Güvem village, near Kızılcahaman, Ankara. Bull. Miner. Res. Explor. Inst. Turk. 88, 25–33. Katsikatsos, G., de Bruijn, H., van der Meulen, A.J., 1981. The Neogene of the island of Euboea (Evia), a review. Geol. Mijnb. 60, 509–516. Kleinhölter, K., 1990. Geologische Untersuchungen im südöstlichen Pyrgos-Becken, WestPeloponnes, Griechenland. (Master thesis) Univ. Münster. Kleinhölter, K., 1994a. Die Neogenen Floren der Peloponnes. (PhD thesis) Univ. Münster. Kleinhölter, K., 1994b. Zur stratigraphischen Einstufung der Platana-Formation im Pyrgos- und Zachara-Becken (West-Peloponnes, Griechenland). Münster. Forsch. Geol. Paläont. 76, 263–270. Kleinhölter, K., 1995a. Pflanzenfossilien aus der oberpliozänen Rrogozhina-Serie von Hamnerei bei Rrogozhina (West-Albanien). N. Jb. Geol. Paläont. (Abh.) 198 (1/2), 173–181. Kleinhölter, K., 1995b. Oberpliozäne Makrofloren aus dem Bereich des Patras-, Rion- und Korinth-Grabens (Peloponnes und SW Kontinentalgriechenland). Münstersche Forsch. Geol. Paläontol. 77, 467–478. Kleinhölter, K., 2004. Die pliozänen Floren des Ochrid- und Kolonja-Beckens (SüdostAlbanien). Münstersche Forsch. Geol. Paläontol. 99, 103–110. Knobloch, E., 1978. Die untermiozäne Flora von Šafov in Südmähren. Věstník Ústredního ústavu Geologického 53, 153–162. Knobloch, E., Velitzelos, E., 1986a. Die obermiozäne Flora von Likudi bei Elassona (Thessalien, Griechenland). Doc. Nat. 29, 5–20. Knobloch, E., Velitzelos, E., 1986b. Die obermiozäne Flora von Prosilion bei Kozani (Sud-Mazedonien, Griechenland). Doc. Nat. 29, 29–33. Knobloch, E., Velitzelos, E., 1987. New leaf floras in the Neogene of Greece. Věstník Ústředního ústavu Geologického 62, 157–164. Knobloch, E., Konzalová, M., Kvaček, Z., 1996. Die obereozäne Flora der Staré SedloSchichtenfolge in Böhmen (Mitteleuropa)Český Geologický ústav, Praha. Kolakovsky, A.A., 1964. Pliotsenovaya flora Kodora. Sukhum. Bot. Sad. Monogr. 1, 1–200. Kopp, K.O., 1965. Geologie Thraziens III: Das Tertiär zwischen Rhodope und Evros. Ann. Géol. Pays Hellén. 16, 315–362. Koskeridou, E., Ioakim, C., 2009. An early Pleistocene mollusc fauna with Ponto-Caspian elements, in intra Hellenic Basin of Atalanti, Arkitsa Region (Central Greece). 9th Symposium on Oceanography & Fisheries, Proceedings, vol. 1, pp. 96–101. Kostopoulos, D.S., Koufos, G.D., Sylvestrou, I.A., Syrides, G.E., Tsombachidou, E., 2009. The late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: new collection. 2. Lithostratigraphy and fossiliferous sites. In: Koufos, G.D., Nagel, D. (Eds.), The Late Miocene Mammal Faunas of Samos. Beiträge zur Paläontologie, 31, pp. 13–26. 115 Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. Koufos, G.D., 2009. The Neogene cercopithecids (Mammalia, Primates) of Greece. Geodiversitas 31, 817–850. Koufos, G.D., Zouros, N., Mourouzidou, O., 2003. Prodeinotherium bavaricum (Proboscidea, Mammalia) from Lesvos island, Greece; the appearance of deinotheres in the Eastern Mediterranean. Geobios 36, 305–315. Koufos, G.D., Kostopoulos, D.S., Vlachou, T.D., 2009. The late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: new collection. 16. Biochronology. In: Koufos, G.D., Nagel, D. (Eds.), The Late Miocene Mammal Faunas of Samos. Beiträge zur Paläontologie, 31, pp. 397–408. Kovar-Eder, J., Kvaček, Z., Ströbitzer-Hermann, M., 2004. The Miocene flora of Parschlug (Styria, Austria) — revision and synthesis. Ann. Naturhist. Mus. Wien 105 A, 45–159. Kovar-Eder, J., Kvaček, Z., Martinetto, E., Roiron, P., 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 321–339. Kranis, H.D., 2007. Neotectonic Basin evolution in central-eastern mainland Greece: an overview. Proceedings of the 11th International Congress, Athens, May, 2007. Bulletin of the Geological Society of Greece, 37, pp. 360–373. Krishtofovich, A.N., Palibin, I.V., Shaparenko, K.K., Yarmolenko, A.V., Baykovskaya, T.N., Grubov, V.I., Il'inskaya, I.A., 1956. Oligotsenovaya flora gory Ashutas v Kazakhstane (Oligocene flora of Ashutas Mount in Kazakhstan). Komarov Botanical Institute Academy of Sciences SSSR, publication 145, ser. 8. Palaeobotanica 1, 1–241 (in Russian). Kunzmann, L., 1999. Koniferen der Oberkreide und ihre Relikte im Tertiär Europas. Ein Beitrag zur Kenntnis ausgestorbener Taxodiaceae und Geinitziaceae fam. nov. Abh. Staatlichen Mus. Miner. Geol. Dresd. 45, 1–191. Kvaček, Z., Erdei, B., 2001. Putative proteaceous elements of the Lomatites-type reinterpreted as new Berberis of the European Tertiary. Plant Syst. Evol. 226, 1–12. Kvaček, Z., Velitzelos, E., 2000. The cycadalean foliage “Encephalartos” gorceixianus Saporta (Zamiaceae) from the Lower Miocene of Greece (Kymi, Island of Evia) revisited. Feddes Repert. 111, 151–163. Kvaček, Z., Walther, H., 1989. Revision der mitteleuropäischen tertiären Fagaceen nach blattepidermalen Charakteristiken III. Teil Dryophyllum Debey ex Saporta und Eotrigonobalanus Walther & Kvaček gen. nov. Feddes Repert. 100, 575–601. Kvaček, Z., Mihajlović, D., Vrabac, S., 1993. Early Miocene flora of Miljevina (eastern Bosnia). Acta Palaeobotanica 33, 53–89. Kvaček, Z., Velitzelos, D., Velitzelos, E., 2002. Late Miocene Flora of Vegora Macedonia N. Greece. Koralis, Athens (175 pp.). Kvaček, Z., Manchester, S.R., Akhmetiev, M.A., 2005. Review of the fossil history of Craigia (Malvaceae s.l.) in the northern hemisphere based on fruits and co-occurring foliage. In: Akhmetiev, M.A., Herman, A.B. (Eds.), Modern Problems of Palaeofloristics, Palaeophytogeography, and Phytostratigraphy. GEOS, Moscow, pp. 114–140. Lacroix, M.A., 1896. Sur la découverte d'un gisement d'empreintes végétales dans les centres volcaniques anciennes de l'île de Phira (Santorin). C.R. Hebd. Seances Acad. Sci. 123, 656–659. Liu, Y.-S., Basinger, J.F., 2000. Fossil Cathaya (Pinaceae) pollen from the Canadian High Arctic. Int. J. Plant Sci. 161, 829–847. Mädler, K., 1971. Die Früchte und Samen aus der frühpleistozänen Braunkohle von Megalopolis in Griechenland und ihre ökologische bedeutung. Beih. Geol. Jahrb. 110, 1–79. Mädler, K., Steffens, P., 1979. Neue Blattfloren aus dem Oligozän, Neogen und Pleistozän der Türkei. Geol. Jahrb. 33, 3–33. Maffei, L., 1930. Alcuni filliti dell'isola di Coo (Dodecanesco). Atti dell'Istituto botanico “Giovanni Briosi” e laboratorio crittogamico italiano della R. università di Pavia. 2 (4), 135–152. Mai, D.H., 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora 171, 525–582. Mai, D.H., 1995. Tertiäre Vegetationsgeschichte Europas. Jena. Mai, D.H., Velitzelos, E., 1992. Über fossile Pinaceen-Reste im Jungtertiär von Griechenland. Feddes Repert. 103, 1–18. Mai, D.H., Velitzelos, E., 2002. The fossil flora of Kallithea (Rhodos, Greece) — a reference flora of the East Mediterranean at the Pliocene/Pleistocene boundary. 6th Europ. Palaeobot.–Palynol. Conf. Athens, Greece 2002, Abstracts, p. 122. Mai, D.H., Velitzelos, E., 2007. The fossil flora of Kallithea (Rhodes, Greece) at the Pliocene/ Pleistocene boundary. Palaeontographica B 277, 75–99. Mai, D.H., Walther, H., 1978. Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR). Abh. Staatlichen Mus. Miner. Geol. Dresd. 28, 1–200. Mai, D.H., Walther, H., 1991. Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abh. Staatlichen Mus. Miner. Geol. Dresd. 38, 1–214. Manchester, S.R., 1987. The fossil history of the Juglandaceae. Monogr. Syst. Bot. 21, 1–137. Manchester, S.R., 1994. Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontogr. Am. 58, 1–205. Martín-Closas, C., Delclòs, X., 2007. The Miocene paleolake of La Cerdanya (Eastern Pyrenees). In: Arenas, C., Alonso-Zarza, A.M., Colombo, F. (Eds.), Geological Field Trips to the Lacustrine Deposits of the Northeast of Spain. Sociedad Geológica de España, Geo-Guías, 3, pp. 181–205. Martinetto, E., 2011. The first mastixioid fossil from Italy and its palaeobiogeographic implications. Rev. Palaeobot. Palynol. 167, 222–229. Massalongo, A., Scarabelli, G., 1859. Studii sulla flora fossile e geologia stratigrafica del Senigaliese. Imola. McIver, E.E., Basinger, J.F., 1999. Early Tertiary floral evolution in the Canadian High Arctic. Ann. Mo. Bot. Gard. 86, 523–545. Meller, B., 1998. Systematisch-taxonomische Untersuchungen von Karpo-Taphocoenosen des Köflach-Voitsberger Braunkohlenrevieres (Steiermark, Österreich; Untermiozän) und ihre paläoökologische Bedeutung. Jahrb. Geol. Bundesanst. 140 (4), 497–654. 116 D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Menitsky, Ju.L., 2005. Oaks of AsiaScience Publishers, Enfield, NH, USA. Menitsky [Menickij], Ju.L., 1984. Duby Asii. Nauka, Leningrad. Mohr, B., 1985. Über eine pleistozäne Pollen-Florula aus dem Tagebau Choremi (Megalopolis, Peloponnes). Doc. Nat. 25, 28–29. Nickel, B., Riegel, W., Schönherr, T., Velitzelos, E., 1996. Environments of coal formation in the Pleistocene lignite at Megalopolis, Peloponnesus (Greece) — reconstruction from palynological and petrological investigations. N. Jb. Geol. Paläont. (Abh.) 200, 201–220. Paicheler, J.-C., Blanc, C., 1981. La flore du basin lacustre miocène de Bes-Konak (Anatolie septentrionale, Turquie). Géol. Mediterr. 8 (1), 19–60. Palamarev, E., 1989. Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst. Evol. 162, 93–107. Pandey, R.K., Namdeo, P., 2009. Floral Diversity of Kanha Tigre Reserve. State Forest Research Institute, Jabalpur, Madhya Pradhesh. Pichler, H., Friedrich, W., 1976. Radiocarbon dates of Santorini volcanics. Nature 262, 373–374. Riegel, W., Wehmeyer, D., Meinke, K., Schwarz, G., Apostolikas, A., Velitzelos, E., 1989. Succession of depositional environments in the Neogene basin at Aliveri, Evia (Greece). Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 261–273. Rögl, F., 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99 A, 279–310. Russo-Ermolli, E., 1994. Analyse pollinique de la succession lacustre pléistocène du Vallo di Diano (Campanie, Italie). Ann. Soc. Geol. Belg. 117, 333–354. Sachse, M., 1997. Die Makrilia-Flora (Kreta, Griechenland) — ein Beitrag zur neogenen Klima- und Vegetationsgeschichte des östlichen Mittelmeergebietes. (PhD thesis) ETH Zürich. Sachse, M., 2004. Die neogene Mega- und Mikroflora von Makrilia auf Kreta und ihre Aussagen zur Klima- und Vegetationgeschichte des östlichen Mittelmeergebietes. Flora Tertiaria Mediterr. 6 (12), 1–323. Sachse, M., Mohr, B.A.R., 1996. Eine obermiozäne Makro- und Mikroflora aus Südkreta (Griechenland), und deren paläoklimatische Interpretation. — Vorläufige Betrachtungen. N. Jb. Geol. Paläont. (Abh.) 200, 149–182. Sakellariou, D., Fountoulis, I., Lykousis, V., 2010. Evidence of cold seeping in PlioPleistocene sediments of SE Peloponese: the fossil carbonate chimneys of Neapolis Region. Bulletin of the Geological Society of Greece, Proceedings of the 12th International Congress, Patras, May, 2010 (10 pp.). Sanz de Siria, A., 1992. Estudio de la macroflora oligocena de las cercanías de Cervera (colección Martí Madern del Museo de Geología de Barcelona). Treballs Museu Geol. Barcelona 2, 269–379. Sanz de Siria, A., 1996. Estudio paleoeológico y paleoclimático de la macroflora oligocena de Cervera (Lleida, España). Treballs Museu Geol. Barcelona 5, 143–170. Saporta, G. de, 1862. Études sur la végétation du sud-est de la France a l'époque Tertiaire. Première partie, III–IV. Ann. Sci. Nat. Bot. 17, 191–311 (4th series). Saporta, G. de, 1867. Études sur la végétation du sud-est de la France a l'époque Tertiaire. Troisième partie, I–III. Ann. Sci. Nat. Bot. 5th Ser. 8, 5–136 (5th series). Saporta, G. de, 1868. Notes sur la flore fossile de Coumi (Eubee). Bull. Soc. Geol. Fr. 2 (55), 315–328. Sauvage, F.-C., 1846. Observations sur la geologie d'une partie de la Grèce continentale et de l'île d'Eubée. Ann. Min. 4, 10. Schroeder, G.-F., 1998. Lehrbuch der Pflanzengeographie. Quelle & Meyer, Wiesbaden. Selmeier, A., Velitzelos, E., 2000. Neue Aufsammlungen von verkieselten Holzresten aus tertiären Schichten Griechenlands (Lesbos, Kastoria, Thrakien). Mitt. Bayer. Staatssamml. Paläontol. Hist. Geol. 40, 213–227. Smith, A.R., 1990. Thelypteridaceae. In: Kramer, K.U., Green, P.S. (Eds.), The Families and Genera of Vascular Plants. I Pteridophytes and Gymnosperms. Springer, Berlin, Heidelberg, pp. 263–272. Solounias, N., 1981. The Turolian fauna from the island of Samos, Greece. With special emphasis on the hyaenids and the bovids. Contrib. Vertebr. Evol. 6, 1–232. Solounias, N., Rivals, F., Semprebon, G.M., 2010. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology 36, 113–136. Strömberg, C.A.E., Werdelin, L., Friis, E.M., Sarac¸, G., 2007. The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 18–49. Subally, D., Bilodeau, G., Tamrat, E., Ferry, S., Debard, E., Illaire-Marcel, C., 1999. Cyclic climatic records during the Olduvai Subchron (Uppermost Pliocene) on Zakynthos Island (Ionian Sea). Geobios 32, 793–803. Suc, J.P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, 429–432. Süss, H., Velitzelos, E., 1993. Eine neue Protopinaceae der Formgattung Pinoxylon Knowlton emend. Read, P. parenchymatosum sp. nov., aus tertiären Schichten der Insel Lemnos, Griechenland. Feddes Repert. 104, 335–341. Süss, H., Velitzelos, E., 1994a. Ein neues fossiles Koniferenholz, Taxaceoxylon biseriatum sp. nov., aus tertiären Schichten der Insel Lesbos, Griechenland. Feddes Repert. 105, 257–269. Süss, H., Velitzelos, E., 1994b. Zwei neue tertiäre Hölzer der Gattung Pinoxylon Knowlton emend. Read aus dem versteinerten Wald von Lesbos, Griechenland. Feddes Repert. 105, 403–423. Süss, H., Velitzelos, E., 1997. Fossile Hölzer der Familie Taxodiaceae aus tertiären Schichten des versteinerten Waldes von Lesbos, Griechenland. Feddes Repert. 108, 1–30. Süss, H., Velitzelos, E., 1998. Thujoxylon antissum sp. nov., ein fossiles Wurzelholz aus tertiären Schichten des versteinerten Waldes von Lesbos, Griechenland. Feddes Repert. 109, 341–350. Süss, H., Velitzelos, E., 1999. Chimairoidoxylon lesboense gen. nov. sp. nova, ein endemisches Holzfossil aus dem Tertiär von Lesbos, Griechenland. Feddes Repert. 110, 329–339. Süss, H., Velitzelos, E., 2000. Zwei neue fossile Hölzer der Formgattung Podocarpoxylon Gothan aus tertiären Schichten der Insel Lesbos, Griechenland. Feddes Repert. 111, 135–149. Süss, H., Velitzelos, E., 2001. Chimairoidoxylon conspicuum sp. nova, ein neues fossiles Holz der Formgattung Chimairoidoxylon Süss & Velitzelos emend. Süss, mit einer Übersicht über das Vorkommen fossiler Hölzer auf der Insel Lesbos, Griechenland. Feddes Repert. 112, 149–157. Süss, H., Velitzelos, E., 2009. Zwei neue fossile Hölzer der Morphogattung Pinoxylon Knowlton emend. Read aus dem Tertiär der Insel Lesbos, Griechenland. Feddes Repertorium 120, 3–14. Süss, H., Velitzelos, E., 2010. Lesbosoxylon gen. nov., eine neue Morphogattung mit dem Typus Lesbosoxylon ventricosuradiatum sp. nova aus dem Tertiär der Insel Lesbos, Griechenland. Feddes Repertorium 121, 18–26. Symeonidis, N., Bachmayer, F., Zapfe, H., 1973. Ausgrabungen in Pikermi bei Athen, Griechenland. Ann. Naturhist. Mus. Wien 77, 125–132. Symeonidis, N., Theodorou, G., Schütt, H., Velitzelos, E., 1987. Paleontological and stratigraphical observations in the area of Achaia and Etolokarnania (W. Greece). Ann. Géol. Pays Hellén. 38, 317–353. Tanai, T., Uemura, K., 1994. Lobed oak leaves from the Tertiary of East Asia with reference to the oak phytogeography of the Northern hemisphere. Trans. Proc. Palaeontol. Soc. Jpn. New Ser. 173 343–365. Teller, F., 1880. Geologische Beobachtungen auf der Insel Chios. Denkschriften der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 40, 340–356. Teodoridis, V., Kvaček, Z., 2005. The extinct genus Chaneya Wang & Manchester in the Tertiary of Euorpe — a revision of Porana-like fruit remains from Öhningen and Bohemia. Rev. Palaeobot. Palynol. 134, 85–103. Teodoridis, V., Sakala, J., 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). N. Jb. Geol. Paläont. (Abh.) 250, 287–312. Tschan, G.F., Denk, T., 2012. Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Bot. J. Linn. Soc. 169, 611–644. Unger, F., 1853. Die fossile Flora von Gleichenberg. Denkschriften der MathematischNaturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 7, 157–184. Unger, F., 1862. Wissenschaftliche Ergebnisse einer Reise in Griechenland und in den ionischen Inseln. VIII. Die fossile Flora von Kumi auf Euboea. Wilhelm Braumüller, Wien 143–186. Unger, F., 1867. Die Fossile Flora von Kumi auf der Insel Euboea. Denkschriften der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 27, 27–90. Van der Geer, A.A.E., Sondaar, P.Y., 2002. The postcranial elements of Paradolichopithecus arvernensis (Primates, Cercopithecidae, Papionini) from Lesvos, Greece. Ann. Géol. Pays Hellén. 1e Ser. 39 A, 71–86. Vasileiadou, K., Zouros, N., 2012. Early Miocene micromammals from the Lesvos Petrified Forest (Greece): preliminary results. Palaeobiodivers. Palaeoenviron. 92, 249–264. Velitzelos, D. (Ed.), 2002. Field Guide to the Neogene of the Island of Evia — Early Miocene Flora of Kymi. Field Guide, 6th Europ. Palaeobotany–Palynology Conf., University of Athens. Velitzelos, D., Denk, T., 2002. Leaf epidermal characteristics of late Tertiary conifers from Greece: taxonomic significance and limitations. 6th Europ. Paleobotany-Palynology Conf. Athens, Greece, pp. 183–184 (Abstracts). Velitzelos, E., 1974. Beiträge zur Geologie von West-Mazedonien. 2. Das Neogen-Becken von Vegora. Ann. Mus. Goulandris 2, 165–180. Velitzelos, E., 1990. New palaeobotanical data for the evolutionary history of plants in the Aegean area, with special reference to the palaeoflora of Thera. In: Hardy, D.A. (Ed.), Thera and the Aegean World III, vol. 2, Earth Sciences, Proceedings of the 3rd International Congress, Santorini, Greece, 3–9 September 1989, vol. 2, pp. 406–409. Velitzelos, E., 1991. Neue paläofloristische Daten zur Entwicklungsgeschichte der Pflanzen im Agäischen Raum, insbesondere die Paläofloren von Thera (Santorin). Doc. Nat. 61, 22–29. Velitzelos, E., 1993. Neue paläofloristische Daten zu känophytischen Floren Griechenlands. Doc. Nat. 78, 1–17. Velitzelos, E., Gregor, H.-J., 1982. Der erste Nachweis von Mastixiaceen im Tertiär von Euboea (Griechenland). Ann. Géol. Pays Hellén. 31, 107–112. Velitzelos, E., Gregor, H.-J., 1985. Pflanzensoziologische Abfolgen und Ökologie der Pleistozänen Braunkohlen des Tagebaues Choremi (Megalopolis, Peloponnes). Doc. Nat. 25, 21–27. Velitzelos, E., Gregor, H.-J., 1986. Geologische Daten zu den fossilführenden Fundstellen Lava, Prosilion und Likudi (Griechenland) nebst Bemerkungen zu deren Frucht- und Samenfloren. Doc. Nat. 29, 34–40. Velitzelos, E., Gregor, H.-J., 1990. Some aspects of the Neogene floral history in Greece. Rev. Palaeobot. Palynol. 62, 291–307. Velitzelos, E., Gregor, H.-J., 1993–1995. Pirgosia mitzopoulosi nov. gen, et spec. (Anacardiacea) an exotic element in the Upper Neogene (Pliocene) of the Pyrgos basin (Greece). Ann. Géol. Pays Hellén. 36, 311–318. Velitzelos, E., Knobloch, E., 1986. Die pliozäne Flora von Skoura bei Sparta auf dem Peloponnes (Griechenland). Doc. Nat. 29, 21–28. Velitzelos, E., Zouros, N., 2000. Petrified forest of Lesvos. Natural History Museum of Petrified Forest of Lesvos. Publ. TOPIO 1–141. Velitzelos, E., Petrescu, I., Symeonidis, N., 1981. Tertiäre Pflanzenreste aus der Ägäis. Die Makroflora der Insel Lesvos (Griechenland). Ann. Géol. Pays Hellén. 30, 500–514. Velitzelos, E., Bůžek, C., Kvaček, Z., 1992. Contributions to the Lower Miocene flora of Aliveri (Island of Evia, Greece). Doc. Nat. 74, 10–25. D. Velitzelos et al. / Review of Palaeobotany and Palynology 204 (2014) 56–117 Velitzelos, E., Kvaček, Z., Walther, H., 1999. Erster Nachweis von Eotrigonobalanus furcinervis (Rossm.) Walther & Kvaček (Fagaceae) in Griechenland. Feddes Repert. 110, 349–358. Velitzelos, E., Kvaček, Z., Velitzelos, D., 2002a. New Oligocene leaf floras from the volcanic complex of the Evros Mountains. 6th European Paleobotany–Palynology Conference Athens, Greece 2002, pp. 185–186 (Abstracts). Velitzelos, E., Kvaček, Z., Denk, T., Velitzelos, D., 2002b. Palaeontology and palaeobotany. In: Velitzelos, D. (Ed.), Field Guide to the Neogene of the Island of Evia — Early Miocene Flora of Kymi. Field Guide, 6th Europ. Palaeobotany–Palynology Conf., University of Athens. Velitzelos, E., Teodoridis, V., Kvaček, Z., Velitzelos, D., 2002c. Plio-Pleistocene flora from Archangelos, Rhodes Island, Greece. 6th Europ. Palaeobotany–Palynology Conf. Athens, Greece 2002, pp. 184–185 (Abstracts). Velitzelos, E., Velitzelos, D., Gregor, H.-J., 2005. Tilia knoblochii nov. spec., the first occurrence of bracts with capsules in Greece, with remarks on the geology of the Aliveri–Kymi-Basin (Lower Miocene, Ev. Flora Tertiaria Mediterr. 6 (9), 1–19. Voudouris, P., Velitzelos, D., Velitzelos, E., Thewald, U., 2007. Petrified wood occurrences in western Thrace and Limnos Island: mineralogy, geochemistry and depositional environment. Proceedings of the 11th International Congress, Bulletin of the Geological Society of Greece, vol. XXXX/1, pp. 238–250. Walter, H., 1956. Vegetationsgliederung Anatoliens. Flora 143, 295–326. Walter, H., 1973. Vegetation of the Earth in Relation to Climate and the Eco-physiological Conditions. Springer, New York. Walther, H., 1972. Studien über tertiäre Acer Mitteleuropas. Abh. Staatlichen Mus. Miner. Geol. Dresd. 19, 1–309. Walther, H., 1989. Cunninghamia miocenica Ettingshausen, eine wichtige Taxodiacee im Tertiär Mitteleuropas. Flora 182, 287–311. Walther, H., 1990. The Weisselster Basin (GDR) — an example of the development and history of Palaeogene forest vegetation in Central Europe. In: Knobloch, E., Kvaček, Z. (Eds.), Proceedings of the Symposium Paleofloristics and Paleoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher, Prague, pp. 149–158. 117 Walther, H., 1994. Invasion of Arcto-Tertiary elements in the Palaeogene of Central Europe. In: Boulter, M.C., Fisher, H.C. (Eds.), Cenozoic Plants and Climates of the Arctic. Springer, Berlin, Heidelberg, pp. 239–250. Weyland, H., Pflug, H.D., 1957. Die Pflanzenreste der pliozänen Braunkohle von Ptolemais in Nordgriechenland I. Palaeontographica B 102, 96–109. Weyland, H., Pflug, H.D., Mueller, H., 1960. Die Pflanzenreste der pliozänen Braunkohle von Ptolemais in Nordgriechenland II. Palaeontographica B 106, 71–98. Willmann, R., 1983. Neogen und jungtertiäre Entwicklung der Insel Kos (Ägäis, Griechenland). Geol. Rundsch. 78, 815–860. Wojcicki, J., Velitzelos, D., 2007. Trapa kvacekii (Trapaceae), a remarkable new fossil species from the late Miocene of Greece. Acta Palaeobotanica 47, 419–424. Yavuz-Işık, N., 2008. Vegetational and climatic investigations in the early Miocene lacustrine deposits of the Güvem Basin (Galatean Volcanic Province), NW Central Anatolia, Turkey. Rev. Palaeobot. Palynol. 150, 130–139. Yavuz-Işık, N., Sarać, G., Ünay, E., de Bruijn, H., 2011. Palynological analysis of Neogene mammal sites of Turkey — vegetational and climatic implications. Yerbilimleri 32, 105–120. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693. Zidianakis, G., Mohr, B.A.R., Fassoulas, C., 2007. A late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation. Geodiversitas 29, 351–377. Zidianakis, G., Iliopoulos, G., Fassoulas, C., 2010. A new late Miocene plant assemblage from Messara Basin (Crete, Greece). Proceedings of the 12th International Congress. Bulletin of the Geological Society of Greece, 63, pp. 781–792. Zouros, N., Velitzelos, E., Valiakos, I., Labaki, O., 2007. The Plaka Petrified Forest Park in Western Lesvos — Greece. Proceedings of the 11th International Congress. Bulletin of the Geological Society of Greece, 40, pp. 1880–1891.